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nneling Paths in an Inve
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oLOow nput : Input supply feeds tunneling current.

e High Input : Gate supply feeds tunneling current.
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e Gate oxide tunneling current ., [Kim2003,
Chandrakasan2001] (a is an experimentally derived factor) :

on % (Vdd /Tox)2 exp (_ a Toxlvdd)
e Options for reduction of tunneling current :
e Decreasing of supply voltage V , (will play its role)
e Increasing gate SiO, thickness T, (delay increases)

e \We believe that combined use of high-T_, resources and
low-T_, resources can reduce the gate oxide tunneling
current of a datapath with little compromise in circuit
performance.
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Related Works

Behavioral Level Subthreshold :

e Khouri, TVLSI 2002 : Algorithms for subthreshold leakage
power analysis and reduction using dual threshold voltage.

e Gopalakrishnan, ICCD2003 : MTCMOS approach for
reduction of subthreshold current

Logic / Transistor Level Tunneling :

o Lee, TVLSIZ2004 : Pin reordering to minimize gate leakage
during standby positions of NOR and NAND gates.

e Sultania, DAC2004 : Heuristic for dual T, assignment for
tunneling current and delay tradeoff.



Bil@ical Model for Tunneling Currént

e We assumed that resources such as
adders, subtractors, multipliers, dividers,
are constructed using 2-input NAND.

e There are total n,,,,, NAND gates in the
network of NAND gates constituting a n-bit
functional unit.

e n,, number of NAND gates are in the
critical path.



B#lical Model for Tunneling Currént

e The tunneling current of a n-bit functional unit :

Iprry = Zj = (1 > ntotal) P’}'Z MOSi € NANDj Pr;lpz;

Pr; is the probability that input of the NAND gate is
at logic "0”, and Pr; is the probability that inputs of

the fransistors that are connected in the parallel
i.e. PMOS are at logic “0”.

e The average tunneling current for a NAND is
calculated as /nnanp = 2mosi e nanp Fri o7



g#lical Model for Tunneling Currgnt

e The direct tunne ing current of a MOS :

| Wng\/()i exd — 4,2my 45°T,, i Vi 1'1
o7 1672, T2 31g\V,, &,

e The voltage across the MOSFET gate
dielectric V, is expressed as follows:



BB lcal Model for Tunneling Currsht

e By solving a quadratic equation we obtain
an expression for V..
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e The flat-band voltage V;, can be obtained
using the expression

o ¥, =2 *Fermi-Level, for strong inversion.
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#8illcal Model for Propagation D

eldy

o Thecrltlcal path delay of a n bit functional unit
using the NAND gates as building blocks :

TPdey = 2 1= (15 nep) 0-9(Nganin TPANMos + TPApyos)

e n. . IS the effective fan-in factor.

e Using physical-alpha-power model the delay
of a MOS, where I¢., IS the saturation drain

current of the MOS forV V y
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Characterization : 45nm 1
Direct Tunneling Current Versus Oxide Thickness
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-x Based Behavioral Synthegis
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B Dual-T,, Assignment : Basis

e Observation: Tunneling current of Functional
Units increases and propagation delay
decreases as oxide thickness deceases.

e Strategy: Maximize utilization of high-T 5y high
leaky resources (e. g. multipliers) and low-T,,
low leaky resources (e.g. adder-subtractor) to
improve chances of tunneling current
reduction with minimal performance
degradation.
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e The library
Multipliers
Subractor

consists  of

and

Adder-
units,

characterized for the 45 nm

technology.

eWeused T, =14 nm,and T,
= 1.7 nm to perform our

experiments.

e The value of T, is chosen as
the default value from the
BSIM4.4.0 model

value of T,
chosen.
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§ Experimental Results
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BN clusions and Future Works

e Tunneling current is a major component of total
power consumption of a low-end CMOS
nanometer circuit.

e Dual-Ty approach results significant reductions in
tunneling current with minimal performance
penalty.

e Development of optimal assignment algorithm is
under progress.

e Tradeoff of tunneling, area and performance
needs to be explored.

e Dual-T,y based design may need more masks for
the lithographic process during fabrication.
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