Internet of Things (IoT) -The State-of-Art

Faculty Development Program Sponsored by Ministry of Electronics & Information Technology, Govt. of India MNIT Jaipur, 30 July - 3 August, 2018

> Saraju P. Mohanty University of North Texas, USA. Email: <u>saraju.mohanty@unt.edu</u> More Info: <u>http://www.smohanty.org</u>

Talk - Outline

- Motivations for IoT
- Selected Components of IoT
- Selected Applications of IoT
- Driving Technologies of IoT
- Challenges and Research in IoT
- IoT Design Flow
- Tools and Solutions for IoT
- Related Buzzwords of IoT
- Conclusions and Future Directions

Smart Cities - A Solution

- Smart Cities: For effective management of limited resource to serve largest possible population to improve:
 - Livability
 - Workability
 - Sustainability

"Cities around the world could spend as much as \$41 trillion on smart tech over the next 20 years."

Source: http://www.cnbc.com/2016/10/25/spending-on-smart-cities-around-the-world-could-reach-41-trillion.html

Smart Cities - 3 Is

Source: Mohanty 2016, EuroSimE 2016 Keynote Presentation

IoT is the Backbone Smart Cities

Source: Mohanty 2016, CE Magazine July 2016

Internet of Things (IoT) - History

1969

The Internet Emerges

The first nodes of what would eventually become known as ARPANET, the precursor to today's Internet, are established at UCLA and Stanford universities.

1982 **TCP/IP** Takes Shape

Internet Protocol (TCP/IP) becomes a standard, ushering in a worldwide network of fully interconnected networks called the Internet.

Getting Global

mentions IoT in an International

2013 **Google Raises** the Glass

Google Glass, controlled through voice recognition software and a touchpad built into the device, is released to developers.

1990 A Thing Is Born

John Romkey and Simon Hackett create the world's first connected device (other than a computer): a toaster powered through the Internet.

Ittp://wwv

Ittp://wwv

Ittp://wwv

1999 The loT Gets a Name

Kevin Ashton coins the term "Internet of things" and establishes MIT's Auto-ID Center, a global research network of academic laboratories focused on RFID and the IoT.

IPV6 Launches

The protocol expands the number of objects that can connect to the Internet by introducing 340 undecillion IP addresses (2128).

2005 Attention

The United Nations first **Telecommunications Union** report. Three years later, the first international IoT conference takes place in Zurich.

Alliance Count The IPSO Alliance is formed to promote IP connections across networks of "smart objects." The alliance now boasts more than 50 member firms.

Connections

2008

2014 **Apple Takes a** Bite

Apple announces HealthKit and HomeKit, two health and home automation developments. The firm's iBeacon advances context and geolocation services.

Source: http://events.linuxfoundation.org/sites/events/files/slides/Design%20-%20End-to-End%20%20IoT%20Solution%20-%20Shivakumar%20Mathapathi.pdf

30 July 2018

by Prof./Dr. Saraju P. Mohanty

6

IoT – Definition - IoT European Research Cluster (IERC)

IEEE also provides a formal, comprehensive definition of IoT.

IoT – Definition - International Telecommunication Union (ITU)

Source: http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf

8

Components

Internet of Things (IoT) – Concept

Things Sensors/actuators with IP address that can be connected to Internet Local Network Can be wired or wireless: LAN, Body Area Network (BAN), Personal Area Network (PAN), Controller Area Network (CAN)

Cloud Services Data either sent to or received from cloud (e.g. machine activation, workflow, and analytics)

mart Electroni

aboratory (SI

Global Network

Connecting bridge between the local network, cloud services and connected consumer devices

Connected Consumer Electronics

Smart phones, devices, cars, wearables

IoT Architecture - 3 & 5 Level Model

Source: Nia 2017, IEEE TETC 2017

11

IoT Architecture - 7 Level Model

Source: http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

30 July 2018

IoT - Architecture

Source: Mohanty 2016, EuroSimE 2016 Keynote Presentation

IoT – Sensors

IoT – Things

Sensor

Sensors + Device with its own IP address \rightarrow Things

IP Address for Internet Connection

The "Things" refer to any physical object with a device that has its own IP address and can connect and send/receive data via network.

IoT - Cloud

IoT - Elements

- Sensors
- Application-Specific Hardware
- General-Purpose Hardware
- Firmware
- Operating System
- Middleware
- Software

IoT - Applications

IoT - Markets and Stakeholders

art Electroni

aboratory (S

Smart Healthcare

Source: Mohanty 2018, CE Magazine January 2018

IoT in Smart Healthcare

Source: https://www.slideshare.net/tibisay_hernandez/connected-health-venfinal

Headband with Embedded Neurosensors

Embedded Skin Patches

Source: Sethi 2017, JECE 2017

Virtual Reality in Healthcare

Source: http://medicalfuturist.com/5-ways-medical-vr-is-changing-healthcare/ https://touchstoneresearch.com/tag/applied-vr/

by Prof./Dr. Saraju P. Mohanty

33

Smart Healthcare - Smart-Walk

Smart Electronic

Laboratory (SES

UNT SCAN

Smart Healthcare - Smart-Log

Smart Healthcare — Efficient Epileptic Seizure Detector

25 July 2018

Smart Healthcare – Ambulatory Health Monitoring System

Prof./Dr. Saraju P. Mohanty

25 July 2018

Smart Electronic Systems

Laboratory (SES

UNT DEPARTME

IoT in Smart Transportation

Source: Mohanty 2016, CE Magazine July 2016

Smart Transportation Features:

- Effective traffic management
- Real-time vehicle tracking
- Vehicle safety Automatic brake
- Vehicle-to-Vehicle communication
- Better scheduling of train, aircraft
- Easy payment system

"The smart transportation system allows passengers to easily select different transportation options for lowest cost, shortest distance, or fastest route."

IoT in Smart Energy

by Prof./Dr. Saraju P. Mohanty

art Electroni

aboratory (SE

IoT in Smart Agriculture

FUTURE FARMS small and smart

SURVEY DRONES

Aerial drones survey the fields, mapping weeds, yield and soil variation. This enables precise application of inputs, mapping spread of pernicious weed blackgrass could increasing Wheat yields by 2-5%.

FLEET OF AGRIBOTS

A herd of specialised agribots tend to crops, weeding, fertilising and harvesting. Robots capable of microdot application of fertiliser reduce fertiliser cost by 99.9%.

Climate-Smart Agriculture Objectives:

- Increasing agricultural productivity
- Resilience to climate change
- Reducing greenhouse gas

http://www.fao.org

Automatic Irrigation System

Source: Maurya 2017, CE Magazine July 2017

FARMING DATA

The farm generates vast quantities of rich and varied data. This is stored in the cloud, bata can be used as digital evidence reducing time spent completing grant applications or carrying out farm inspections saving on average £5,500 per farm per year.

M

TEXTING COWS Sensors attached to livestock allowing monitoring of animal

allowing monitoring or animal health and wellbeing. They can send texts to alert farmers when a cow goes into labour or develops infection increasing herd survival and increasing milk yields by 10%.

SMART TRACTORS GPS controlled steering and optimised route planning

optimised route planning reduces soil erosion, saving fuel costs by 10%.

Source: http://www.nesta.org.uk/blog/precision-agriculturealmost-20-increase-income-possible-smart-farming

Smart Agriculture/Farming Market Worth \$18.21 Billion By 2025

Sources: http://www.grandviewresearch.com/press-release/global-smart-agriculture-farming-market

by Prof./Dr. Saraju P. Mohanty

30 July 2018

Laboratory (SES

UNT SCAN

IoT in Smart Structure

Source: http://www.exchangecommunications.co.uk/products/smartbuilding-and-cities/smart-buildings.php https://www.slideshare.net/RajivDinesh2/lel antosstructuralhealthmonitoringbrochure

51

Driving Technologies

Cheap and Compact Sensor Technology

Laboratory (SES

UNT

Smart Image Sensor

Variety of Communications Technology

Visible Light Communications (VLC)

 LEDs can switch their light intensity at a rate that is imperceptible to human eye.
This property can be used for the value added services based on Visible Light Communication (VLC).

Characteristic	LiFi	WiFi
Bandwidth	Huge	Limited
Requires Line of Sight	Yes	No
EMI + Hazard Concerns	Low	High
Susceptibility to	Low	High
Eavesdropping		
Range	Short	Medium
Data Density	High	Limited

Source: VLCS-2014

by Prof./Dr. Saraju P. Mohanty

30 July 2018

Cheap Computing Technology

Source: http://www.lattepanda.com

Source: https://www.sparkfun.com/products/13678

Efficient Media Compression – Better Portable Graphics (BPG)

BPG compression instead of JPEG?

- Attributes that differentiate BPG from JPEG and make it an excellent choice include:
 - Meeting modern display requirements: high quality and lower size.
 - BPG compression is based on the High Efficiency Video Coding (HEVC), which is considered a major advance in compression techniques.
 - Supported by most web browsers with a small Javascript decoder.

JPEG Compression

Memory Technology: Cheaper, Larger, Faster, Energy-Efficient

by Prof./Dr. Saraju P. Mohanty

Smart Electronic S

UNT

Laboratory (SES

Memory Technology – Car Example

Smart Electronic Systems

Laboratory (SES)

UNT DEPARTM

by Prof./Dr. Saraju P. Mohanty

69

art Electroni

aboratory (S

Al, Machine Learning, and Deep Learning

ARTIFICIAL INTELLIGENCE

stirs excitement.

Vision Processing Unit (VPU)

- High-Performance Machine Vision Processing
- Deep Neural Network-based Classification
- Pose Estimation
- > 3D Depth Estimation
- Visual Inertial Odometry (Navigation)
- Gesture/Eye Tracking and Recognition

Vision Processing Unit (VPU)

Source: https://www.movidius.com/solutions/vision-processing-unit

Natural Language Processing (NLP)

- NLP is the computer method to analyze, understand, and derive meaning from human language.
- Enables user to address computers as if they are communicating with a person.

Source: https://www.linkedin.com/pulse/natural-language-processing-2016-global-market-forecasts-rane

Source: http://blog.algorithmia.com/introduction-natural-language-processing-nlp/

by Prof./Dr. Saraju P. Mohanty

30 July 2018

Cognitive Computing

The TabulatingEra T (1900s – 1940s)

The Programming Era (1950s-present) The Cognitive Era (2011 –)

Cognitive Computing: Not just "right" or "wrong" anymore but "probably".

- □ Systems that learn at scale, reason with purpose and interact with humans naturally.
- □ Learn and reason from their interactions with humans and from their experiences with their environment; not programmed.

Usage:

- AI applications
- Expert systems
- Natural language processing
- Robotics
- Virtual reality

Source: http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf

Neuromorphic Computing or Brain-Inspired Computing

Neuromorphic Computing or Brain-Inspired Computing

Application 1: Integrate into assistive glasses for visually impaired people for navigating through complex environments, even without the need for a WiFi connection.

Application 2: Neuromorphic-based, solar-powered "sensor leaves" equipped with sensors for sight, smell or sound can help to monitor natural disasters.

Source: https://blogs.scientificamerican.com/observations/brain-inspired-computing-reaches-a-new-milestone/

Brain Computer Interface (BCI)

Source: http://brainpedia.org/brain-computer-interface-allows-paralysis-als-patients-type-much-faster/

Brain-Computer Interface Allows paralysis patients to Type Faster

"Currently, people interact with their devices by thumb-typing on their phones. A high-bandwidth interface to the brain would help achieve a symbiosis between human and machine intelligence and could make humans more useful in an AI-driven world."

-- Neuralink - neurotechnology company - Elon Musk.

Sources: http://brainpedia.org/elon-musk-wants-merge-human-brain-ai-launches-neuralink/

> The Blockchain contains the complete transaction or other record keeping.

Source: https://www.linkedin.com/pulse/securing-internet-things-iot-blockchain-ahmed-banafa Refer: Puthal, Mohanty 2018, CE Magazine March 2018

Natural User Interface (NUI)

 Metaphor Exploratory NUI Direct Intuitive

NUI: User interfaces where the interaction is direct and consistent with our "natural" behavior.

Source: https://www.interaction-design.org/literature/article/natural-user-interfaces-what-are-they-and-how-do-you-design-user-interfaces-that-feel-natural

30 July 2018

Challenges and Research

IoT – Multidiscipline Research

Source: Sethi 2017, JECE 2017

by Prof./Dr. Saraju P. Mohanty

Laboratory (SES

UNT DEMARTMENT C

Massive Scaling

Source: https://www.linkedin.com/pulse/history-iot-industrial-internet-sensors-data-lakes-0-downtime

High Design and Operation Cost

- The design cost is a one-time cost.
- Design cost needs to be small to make a IoT realization possible.
- The operations cost is that required to maintain the IoT.
- A small operations cost will make it easier to operate in the long run with minimal burden on the budget of application in which IoT is deployed. "Cities around the world coul"

Source: http://www.industrialisationproduits-electroniques.fr

"Cities around the world could spend as much as \$41 trillion on smart tech over the next 20 years." Source: http://www.cn.bc.com/2016/10/25/spending-onsmart-cities-around-the-world-could-reach-41-trillion.html

100

Communication Latency and Energy Consumption

- Connected cars require latency of ms to communicate and avoid impending crash.
 - Faster connection
 - Low latency
 - Lower power

- 5G for connected world: This enables all devices to be connected seamlessly.
- How about 5G, WiFi working together more effectively?

Source: https://www.linkedin.com/pulse/key-technologies-connected-world-cloud-computing-ioe-balakrishnan

Impact of High Energy Consumption

- Great idea: Smartwatch with functioning like smartphone.
- Big Problem: Battery life of one time charging is only 1 day.

Source: Mohanty 2013, CARE 2013 Keynote

by Prof./Dr. Saraju P. Mohanty

107

Data is Most Valuable

Source: http://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource

Bigdata in IoT and Smart Cities

S.A.

Smart Electronic Systems

Laboratory (SESI

UNT DEPARTMENT OF SCIENCE & ENGIN

Prof./Dr. Saraju P. Mohanty

Laboratory (SES

UNT

Security, Privacy, IP Rights

Source: https://blogs.deusto.es/master-informatica/privacidad-vs-seguridad/

by Prof./Dr. Saraju P. Mohanty

30 July 2018

IoT Security - Attacks and Countermeasures

			Threat	Against		Countermeasures		
Edge nodes			Hardware Trojans	All		Side-channel signal analysis		
	Computing nodes		Side-channel attacks	C,AU,NR,P		Trojan activation methods		
			Denial of Service (DoS)	A,AC,AU,NR,P		Intrusion Detection Systems (IDSs)		
			Physical attacks	All		Securing firmware update		
			Node replication attacks	All		Circuit/design modification		
			Camouflage	All				
			Corrupted node	All		Kill/sleep command		
	RFID tags		Tracking	P, NR		Isolation		
			Inventorying	P, NR		Blocking		
			Tag cloning	All		Anonymous tag		
			Counterfeiting	All		Distance estimation		
Communication			Eavesdropping	C,NR,P		Personal firewall		
			Injecting fraudulent packets	P,I,AU,TW,NR		Cryptographic schemes		
		L/	Routing attacks	C,I,AC,NR,P		Reliable routing		
			Unauthorized conversation	All	$ \land \land \land$	De-natterning and		
			Malicious injection	All		Decentralization		
			Integrity attacks against	C,I		Role-based authorization		
Edge computing			learning	A 11		Information Flooding		
			and inadequate testing	All		Pre-testing		
2480	eempumg		Insufficient/Inessential	C,AC,NR,P		Outlier detection		
	-		logging					
C- Confidentiality, I – Integrity, A - Availability, AC – Accountability, AU –								
Auditability, TW – Trustworthiness, NR - Non-repudiation, P - Privacy								

Security - Information, System

Cybercrime: Top 20 Countries

Source: https://www.enigmasoftware.com/top-

20-countries-the-most-cybercrime/

 Cybercrime damage costs to hit \$6 trillion annually by 2021
Cybersecurity spending to exceed \$1 trillion from 2017 to 2021

Source: http://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics-for-2017.html

Denial-of-Service (DoS) Attacks

Source: https://bogner.sh/2015/05/analysing-a-denial-of-service-attack-tool/

by Prof./Dr. Saraju P. Mohanty

30 July 2018

Autonomous Car – Privacy Venerability

Source: http://www.computerworld.com/article/3005436/cybercrime-hacking/black-hat-europe-it-s-easy-and-costs-only-60-to-hack-self-driving-car-sensors.html

Smart Healthcare - Security and Privacy Issue

"Film piracy cost the US economy \$20.5 billion annually."

Source: http://www.ipi.org/ipi_issues/detail/illegal-streaming-is-dominating-online-piracy

A DRM Hardware Integrated CE System – Secure Digital Camera (SDC) Example

Source: Mohanty 2017, CE Magazine July 2017; Mohanty 2009, JSA Oct 2009

Copyright Protection Hardwares –

Spatial Domain Watermarking

by Prof./Dr. Saraju P. Mohanty

198

Laboratory (SES

UNT

Video Watermarking Architecture Datapath

 FPGA Prototyping

 Throughput: 44 frames/sec

 Logic Elements in FPGA Prototyping : 28322

 Source: Mohanty 2011, JSS May 2011

DRM Hardware - Secure Better Portable Graphics (SBPG)

Idea of Secure BPG (SBPG) High-Efficiency Video Coding Architecture

Simulink Prototyping Throughput: 44 frames/sec Power Dissipation: 8 nW

> Source: Mohanty 2018, IEEE Access 2018 Source: Mohanty 2016, ISVLSI 2016 and EuroSimE 2016

200

TrustCAM - Security and Privacy

For integrity protection, authenticity and confidentiality of image data.

- Identifies sensitive image regions.
- Protects privacy sensitive image regions.
- > A Trusted Platform Module (TPM) chip provides
 - a set of security primitives.

Source: https://pervasive.aau.at/BR/pubs/2010/Winkler_AVSS2010.pdf

Smart Cameras with Signcryption

Signcryption is a resource-efficient technique which implements signature and encryption in a single step for lower computational and communications overhead.

30 July 2018

Hardware Reverse Engineering

Source: http://legacy.lincolninteractive.org/html/ CES%20Introduction%20to%20Engine ering/Unit%203/u3I7.html

Source:

https://www.slideshare.net/SOURCEConferenc e/slicing-into-apple-iphone-reverse-engineering

CE System disassembly Subsystem identification, modification

Source: http://grandideastudio.com/wpcontent/uploads/current_state_of_hh_slides.pdf

Chip-Level Modification

Source: http://picmicrocontroller.com/counting-bitshardware-reverse-engineeringsilicon-arm1-processor/

by Prof./Dr. Saraju P. Mohanty

208

Design Flow

Source: http://events.linuxfoundation.org/sites/events/files/slides/Design%20-%20End-to-End%20%20IoT%20Solution%20-%20Shivakumar%20Mathapathi.pdf

IoT – Design Flow

Source: http://events.linuxfoundation.org/sites/events/files/slides/Design%20-%20End-to-End%20%20IoT%20Solution%20-%20Shivakumar%20Mathapathi.pdf

236

30 July 2018

by Prof./Dr. Saraju P. Mohanty

Laboratory (SES

UNT SCAN

Hardware for IoT

Embedded Systems and Boards (e.g. Arduino Yun, Raspberry Pi, BeagleBone, Samsung ARTIK)

Wearable Devices and Gadgets (e.g. Samsung Gear 2, FitBit Flex, FLORA, iWallet)

Features	Processor/Microcontroller	Graphics Processing Unit	Clock Speed	Size	Memory	RAM	Supply Voltage	Listed Price
SparkFun Blynk Board	Tensilica L106 32-b	No	26 MHz	51 mm x 42 mm	4 MB	128 KB	5 V via micro-USB/ Li-Po connector and charging circuit	US\$29.95
Arduino Yun	ATmega32u4 and Atheros AR9331 (for Linux)	No	16 MHz and 400 MHz	73 mm x 53 mm	32 KB and 16 MB + micro-SD	64 MB DDR2	5 V via micro-USB	US\$58
Raspberry Pi 3	Broadcom BCM2837 and ARM Cortex-A53 64-b Quad Core	VideoCore IV @ 300/400 MHz	1.2 GHz	85 mm x 56 mm	Micro-SD	1 GB LPDDR2	5 V via micro-USB	US\$35
cloudBit	Freescale i.MX233 (ARM926EJ-S core)	No	454 MHz	55 mm x 19 mm	Micro-SD slot with 4-GB micro-SD	64 MB	5 V via micro-USB	US\$59.95
Photon	STM32F205 120Mhz ARM Cortex M3	No	120 MHz	36.5 mm x 20.3 mm	1 MB	128 KB	5 V via micro-USB	US\$19
BeagleBone Black	AM335x ARM Cortex-A8	PowerVR SGX530	1 GHz	86 mm x 56 mm	4 GB 8-b eMMC, micro-SD	512 MB DDR3	5 V via mini-USB	US\$49
Pinoccio	ATmega256RFR2	No	16 MHz	70 mm x 25 mm	256 KB	32 KB	5 V via micro-USB/ Li-Po connector and charging circuit	US\$109
UDOO	Freescale i.MX 6 ARM Cortex-A9 and Atmel SAM3X8E ARM Cortex-M3	Vivante GC 2000 for 3-D + GC 355 for 2-D (vector graphics) + GC 320 for 2-D	1 GHz	110 mm x 85 mm	Micro-SD	1 GB DDR3	12 V	US\$135
Samsung Artik 10	ARM A15x4 and A7x4	Mali-T628 MP6 core	1.3 GHz and 1.0 GHz	39 mm x 29 mm	16 GB	2 GB LPDDR3	3.4–5 V	US\$100
					Source: Si	ngh 2017, C	E Magazine, Ap	ril 2017

by Prof./Dr. Saraju P. Mohanty

239

Tools and Solutions

IoT - Design & Simulation Challenges

- Traditional controllers and processors do not meet IoT requirements, such as multiple sensor, communication protocol, and security requirements.
- Existing tools are not enough to meet challenges such as time-to-market, complexity, cost of IoT.
- Can a framework be developed for simulation, verification, and optimization:
 - of individual (multidiscipline) "Things"
 - of IoT Components
 - of IoT Architecture

IoT Simulators

244

IoT Simulator - CUPCARBON

About

CUPCARBON is a smart city and Internet of Things Wireless sensor network simulator (SCI-WSN)

Objective

- Design, Visualize, Debug
- Validate distributed algorithms
- Create environmental scenarios

Environments

Source: http://www.cupcarbon.com/

- Design of mobility scenarios and the generation of natural events such as fires and gas as well as the simulation of mobiles such as vehicles and flying objects (e.g. UAVs, insects, etc.).
- A discrete event simulation of WSNs which takes into account the scenario designed on the basis of the first environment.

IoT Simulators - Node-RED

About:

- Node-RED is a flow-based IoT Simulator.
- It is a programming tool for wiring together hardware devices, APIs and online services in new ways.
- The light-weight runtime is built on Node.js, taking full advantage of its event-driven, non-blocking model.

Editor:

- Browser-based editor.
- The flows created in Node-RED are stored using JSON which can be easily imported and exported for sharing with others.

Advantages:

- Available for smaller computing devices such as Raspberry Pi.
- It takes moments to create cloud applications that combine services from across the platform.

IoT Simulators - Meshify

About:

- Meshify offers industrial IoT solutions. It helps to monitor, analyze, control, & track your devices.
- It was founded in 2011 with the goal of making IoT more accessible.

Services:

- Hardware Selection & Implementation
- UI/UX Design & development
- Seasoned Integrations Team
- End-to-end Architecture design
- Professional Project Management

IoT Simulators – Observations

- IoT does not have a one-size-fits-all solution.
- IoT solutions often require pulling together different device APIs and online services in new and interesting ways.
- It is a multi-disciplinary domain and everyone cannot master everything.
- Tools that make it easier for developers at all levels, are always in demand.

Model based Simulation?

 "Model of a model" -- Metamodels are mathematical function (s) used to represent computer simulation models – e.g. polynomial functions, DOE predictive functions, neural networks, and Kriging interpolation:

$$\hat{F}(x_n) = F(x_n) + \varepsilon \approx F(x_n)$$

252

iVAMS - ANN Model Generation

Laboratory (SES

UNT DEPARTM

iVAMS - ANN Model

ANN? CNN? DNN?

iVAMS - ANN Model

Related Buzzwords

Some related Buzzwords

by Prof./Dr. Saraju P. Mohanty

rt Electron

aboratory (S

UNT

IoT Vs Sensor Networks

Wireless Sensor Networks (WSN)

- WSN is like the eyes and ears of the IoT.
- Anetwork of small wireless electronic nodes which consists of different sensors.
- The purpose is to collect data from the environment.

IoT adds value to data!

brain. Store both real world data and can also be used to monitor the real world parameters and give meaningful interpretation.

IoT in a broad sense is like a

IoT

aboratory (SES

Mohanty 258

IoT Vs Fog Computing

Source: https://www.researchgate.net/figure/311918306_fig1_Fig-1-High-level-architecture-of-Fog-and-Cloud-computing by Prof./Dr. Saraju P. Mohanty

UNT

by Prof./Dr. Saraju P. Mohanty

aboratory (SE

UNT SCAN

Internet of MedicalThings (IoMT)

IoMT is a collection of medical devices and applications that connect to healthcare IT systems through Internet.

Source: http://www.icemiller.com/ice-on-fire-insights/publications/the-internet-of-health-things-privacy-and-security/

Source: http://internetofthingsagenda.techtarget.com/definition/IoMT-Internet-of-Medical-Things

Internet of Every Things (IoE)

Source: http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf

Conclusions

Conclusions

- IoT has following components: Things, LAN, Cloud, Internet.
- IoT is backbone of smart cities.
- Scalability, Cost, Energy-consumption, Security are some important challenges of IoT.
- Security, Privacy, and Ownership Rights are critical for trustworthy IoT design.
- Physical Unclonable Functions (PUF) emerging as a good security solution.
- Coordination among the various researchers and design engineers is a challenge as IoT is multidisciplinary.

Future Directions

- Energy-Efficient "Thing" design is needed.
- Security and Privacy of Information need more research.
- Security of the CE systems (e.g. UAV, Smart Cars) needs research.
- Safer and efficient battery need research.
- IoT automatic design tool needs research.
- Some IoT simulators exist, but more needed for efficient, accurate, scalable, multidiscipline simulations.

Population Trend – Urban Migration

"India is to be found not in its few cities, but in its 700,000 villages." - Mahatma Gandhi

2025: 60% of world population will be urban

2050: 70% of world population will be urban

Source: http://www.urbangateway.org

Human Migration Problem

- Uncontrolled growth of urban population
- Limited natural and man-made resources

Source: https://humanitycollege.org

Can Any Smartness/Intelligence Solve?

Source: https://www.wilsoncenter.org/article/building-slum-free-mumbai

by Prof./Dr. Saraju P. Mohanty

2018 IEEE CONSUMER ELECTRONICS SOCIETY NEW MEMBER APPLICATION

Society Website: https://cesoc.ieee.org/

These offers apply to full conference and full conference attendees during the conference only.

Free CE Society memberships are open to all current IEEE members. Membership periods end Dec 31 2018 and must be renewed by the member through IEEE.

Incomplete or illegible applications cannot be processed. <u>Write legibly</u> Enter your name as you want it to appear on you membership card and IEEE correspondence.

Your Contact information

Male 🗖 Female 🗖	Date of Birth (DD/MM/YYYY)	1 1
-----------------	----------------------------	-----

C	1 To	
Title	First/Given	Name

Middle Name Last/Family Surname

Home

Street Address

City State/Province

Postal Code Country

Home Phone

Home Email

Your Professional Experience

Membership Fee: \$20 Student Membership Fee: \$10

(circle your choices below)

I have graduated from a three-to-five-year academic program with a university-level degree.

This academic institution or program is accredited in the country where the institution is located. Yes No Do not know

I have _____ years of professional experience in teaching, creating, developing, practicing, or managing within the following field:

Engineering

Computer Sciences and Information Technologies

Physical Sciences

Biological and Medical Sciences

Mathematics

Technical Communications, Education, Management, Law and Policy Other (please specify): _____

Are you or were you ever a member of the IEEE? Yes No If Yes, provide, if known:

Membership Number

Grade

Year of Expiration if no longer a member

Select Your Membership

Students, IEEE Members, Joining CE Society

□IEEE Member, joining CE Society

Online at: https://cesoc.ieee.org/membership.html

Benefits Include: 1) A nice color magazine shipped to your door step to update you on latest CE

- 2) Discount in conference registration
- Networking opportunity with global peers

30 July 2018

by Prof./Dr. Saraju P. Mohanty

EEE Consumer Electronics Magazine

The IEEE Consumer Electronics Magazine (CEM) is the flagship awardwinning magazine of the consumer electronics (CE) society of IEEE. From 2018, the magazine is published on a bimonthly basis and features a range of topical content on state-of-art consumer electronics systems, services and devices, and associated technologies.

The CEM won an Apex Grand Award for excellence in writing in 2013. The CEM is the winner in the Regional 2016 STC Technical Communication Awards - Award of Excellence! The CEM is indexed in Clarivate Analytics (formerly IP Science of Thomson Reuters). The 2017 impact factor of CEM is 1.434.

Aim and Scope

- Consumer electronics magazine covers the areas or topics that are related to "consumer electronics".
- Articles should be broadly scoped typically review and tutorial articles are well fit for a magazine flavor.
- Technical articles may be suitable but these should be of general interest to an engineering audience and of broader scope than archival technical papers.
- Topics of interest to consumer electronics: Video technology, Audio technology, White goods, Home care products, Mobile communications, Gaming, Air care products, Home medical devices, Fitness devices, Home automation and networking devices, Consumer solar technology, Home theater, Digital imaging, In-vehicle technology, Wireless technology, Cable and satellite technology, Home security, Domestic lighting, Human interface, Artificial intelligence, Home computing, Video Technology, Consumer storage technology. Studies or opinion pieces on the societal impacts of consumer electronics are also welcome.

Have questions on submissions or ideas for special issues, contact EiC at: saraju.mohanty@unt.edu

Submission Instructions

Submission should follow IEEE standard template and should consist of the following:

- 1. A manuscript of maximum 6-page length: A pdf of the complete manuscript layout with figures, tables placed within the text, and
- II. Source files: Text should be provided separately from photos and graphics and may be in Word or LaTeX format.
- High resolution original photos and graphics are required for the final submission.
- The graphics may be provided in a PowerPoint slide deck, with one figure/graphic per slide.
- An IEEE copyright form will be required. The manuscripts need to be submitted online at the URL:

http://mc.manuscriptcentral.com/cemag

Editorial Board

* Saraju P. Mohanty, University of North Texas, Editor-in-Chief (EiC) · Peter Corcoran, National University of Ireland Galway, Emeritus EiC Katina Michael, University of Wollongons Pallab Chatterjee, Media & Entertainment Technologies Stu Lipoff, IP Action Partners LLC Anirban Sengupta, Indian Institute of Technology Indore Tom Coughlin, Coughlin Associates Stephen Dukes, Imaginary Universes LLC • Helen (Hai) Li, Duke University Himanshu Thapliyal, University of Kentucky Soumya Kanti Datta, EURECOM Research Center Fabrizio Lamberti, Politecnico di Torino Tom Wilson, Tandem Launch Inc., Montreal Robin Bradbeer, Pearl Technologies Ltd, Hong Kong Konstantin Glasman, Saint Petersburg State Univ. of Film & TV Bernard Fong, Automotive Parts and Accessory Systems R&D Centre · Animesh Kumar, Indian Institute of Technology Bombay Vincent Wang, DTS Inc., Singapore Technology Center · Euce S. Jang, Hanyang University Petronel Bigioi, FotoNation Ltd. Hyoungshick Kim, Sungkyunkwan University Jong-Hyouk Lee, Sangmyung University Shiyan Hu, Michigan Technological University Theocharis Theocharides, University of Cyprus • Niranjan Ray, KIIT University, Bhubaneswar Xavier Fernando, Rverson University Bob Frankston, Frankston.com · Sergio Saponara, University of Pisa Arslan Munir, Kansas State University · Hitten Zaveri, Yale University • Muhammad K. Khan, King Saud University · Deepak Puthal, University of Technology Sydney Fatemeh Tehranipoor, San Francisco State University Sudeep Pasricha, Colorado State University Shang-Jang Ruan, National Taiwan University of Science & Technology (NTUST) • Santanu Mishra, Indian Institute of Technology Kanpu · Bijaya K. Panigrahi, Indian Institute of Technology Delhi Madhavi Ganpathiraju, University of Pittsburgh Amit K. Mishra, University of Cape Town Dhruva Ghai, Oriental University · Wahab Almuhtadi, Algonquin College Haruhiko Okumura, Toshiba Corporation • Upasna Vishnoi, Marvell Semiconductor Inc. · Sally Applin, University of Kent Yu Yuan, CATE Global Corporation Susanne Wende, Noerr LLP · Joseph Wei, SJW Consulting Inc. · Mike Borowczak, University of Wyoming · Abdullah S. Almuttiri, Nokia Al-Saudia, Riyadh · Ezendu Ariwa, University of Bedfordshire

30 July 2018

More Information at: http://cesoc.ieee.org/publications/ ce-magazine.html

Technical Committee on VLSI (TCVLSI), IEEE-CS http://www.ieee-tcvlsi.org

Join TCVLSI It's free to join @ bit.ly/join-tcvlsi

What is TC-VLSI?

A technical committee of IEEE-CS serves as the focal point of the various technical activities within a technical discipline.

TCVLSI is a constituency of the IEEE-CS that oversees various technical activities related to VLSI.

Key People

Chair Saraju P. Mohanty, University of North Texas Vice Chair for Conferences -Jia Di, University of Arkansas Treasurer -Hai (Helen) Li, Duke University Vice Chair for Membership -Dhruva Ghai, Oriental University Indore, India Vice Chair for Liaison -Nagi Naganathan, Avago Technologies Vice Chair Outreach and Webmaster -Mike Borowczak, University of Wyoming Newsletter EiCs -Saraju P. Mohanty, University of North Texas Anirban Sengupta, Indian Institute of Technology Indore Technically Co-Sponsored Past Chair -Joseph Cavallaron Rice University

TCVLSI Sister Conferences Sponsored

ARITH: www.arithsymposium.org ASAP: http://www.asapconference.org/ ASYNC: http://asyncsymposium.org/ iNIS: http://www.ieee-inis.org ISVLSI: http://www.isvlsi.org IWLS: http://www.iwls.org MSE: http://www.mseconference.org SLIP: http://www.sliponline.org ECMSM: http://ecmsm2017.mondragon.edu/en

ACSD: http://pn2017 JuniPators//Dr. Saraju P. Mohant LSI

VLSID: http://vlsidesignconference.org

Technical Scope Various aspects of VLSI design including design of system-level, logic-level, and circuitlevel, and semiconductor processes

TCVLSI Offers

- Student travel grants
- Best paper awards
- Timely CFP info
- Free membership
- Venue to contribute to

Circuits & Systems

Hardwares are the drivers of the civilization, even softwares need them.

Thank You !!!

Slides Available at: http://www.smohanty.org

by Prof./Dr. Saraju P. Mohanty