Artificial Intelligence - Broad Perspectives

Fulbright Lecture 2023 – KL Deemed University

Guntur, India, 1-31 July 2023

Prof./Dr. Saraju Mohanty University of North Texas, USA.

Outline

- Introduction
- AI/ML Applications
- AI/ML Types
- ML Algorithms
- DNNs
- Al Tools
- Al Hardware
- Al Challenges
- Al Data Quality Aspects

AI/ML – Big Picture

3

Systems – End Devices

AI Modeling Applications

The Four Waves of Al

First Wave	Second Wave	Third Wave	Fourth Wave
c. 1970s - 1990s	c. 2000s - present	est. 2020s - 2030s	est. 2030s →
Good at reasoning, but no ability to learn or generalize. • GOFAI - "Good Old Fashioned Al." • Symbolic, heuristic, rule based. • Handcrafted knowledge, "expert systems."	Good at learning and perceiving, but minimal ability to reason or generalize. • Statistical learning, "deep" neural nets, CNN. • Advanced text, speech, language and vision processing.	Excellent at perceiving, learning and reasoning, and able to generalize. • Contextual adaptation, able to explain decisions. • Can converse in natural language. • Requires far fewer data samples for training. • Able to learn and function with minimal supervision.	Able to perform any intellectual task that a human can. • AGI (Artificial General Intelligence), possibly leading to ASI (Artificial Superintelligence) and the "technological singularity."
		Pandai	THE SINGULARITY IS NEAR RAY KURZUIEII

Six Kin Development (adapted from DARPA's "Three Waves of AI") Source: https://www.sharper.ai/taxonomy-ai/

Large Amount of Data Processing for Al

Source: https://matmatch.com/blog/the-age-of-artificial-intelligence-in-materials-science-part-one/

Big Data Versus Deep Learning

Source: R. Fernandez Molanes, K. Amarasinghe, J. Rodriguez-Andina and M. Manic, "Deep Learning and Reconfigurable Platforms in the Internet of Things: Challenges and Opportunities in Algorithms and Hardware," *IEEE Industrial Electronics Magazine*, vol. 12, no. 2, pp. 36-49, June 2018.

7

Timeline of AI, ML, and Deep Learning

11

Source: https://www.rle.mit.edu/eems/wp-content/uploads/2019/06/Tutorial-on-DNN-01-Overview.pdf

AI/ML Applications

16

AI / Machine Learning is Ubiquitous

Self-driving Cars

Cybersecurity

Facial Recognition

Speech Recognition

Source: Sandip Kundu ISVLSI 2019 Keynote.

17

AI Modeling Applications

18

Smart Healthcare – AI/ML Framework

Source: Hongxu Yin, Ayten Ozge Akmandor, Arsalan Mosenia and Niraj K. Jha (2018), "Smart Healthcare", *Foundations and Trends® in Electronic Design Automation*, Vol. 12: No. 4, pp 401-466. http://dx.doi.org/10.1561/1000000054

Smart Healthcare – AI/ML is Key

Source: Robert Pearl, "Artificial Intelligence In Healthcare: Separating Reality From Hype", 13 Mar 2018, https://www.forbes.com/sites/robertpearl/2018/03/13/artificial-intelligence-in-healthcare/?sh=598aa64d1d75 AI Role Includes:

- Automatic diagnosis
- Disease predication
- Diet prediction
- Pandemic projection
- Automatic prescription

Smart Healthcare – Diet Monitoring - iLog

iLog- Fully Automated Detection System with 98% accuracy.

Source: L. Rachakonda, S. P. Mohanty, and E. Kougianos, "iLog: An Intelligent Device for Automatic Food Intake Monitoring and Stress Detection in the IoMT", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. 66, No. 2, May 2020, pp. 115--124.

Smart Healthcare - Diet Monitoring - iLog 2.0

Food Item	Saturated Fat (g)	Suga (g)	r Sodiun (mg)	n Protein (g)	Carbohydrates (g)
Fries	6.44	1.56	244	4.03	34.84
Burger	6.87	4.67	481	17.29	48.14
Ketchup	0	3.2	136	0.2	4.13
Total	13.31	9.43	861	21.52	87.11
Food Item	Saturated Fat (g)	Sugar (g)	Sodium (mg)	Protein (g)	Carbohydrates (g)
Rice	0.3	0.3	6	12.9	135
Salad	0 0	20	264	1 1	7
	0.0	5.9	204	1.1	/

Source: A. Mitra, S. Goel, **S. P. Mohanty**, E. Kougianos, and L. Rachakonda, "iLog 2.0: A Novel Method for Food Nutritional Value Automatic Quantification in Smart Healthcare", in *Proceedings of the IEEE International Symposium on Smart Electronic Systems (iSES)*, 2022, pp. Accepted.

Smart Agriculture – AI/ML Technology

Smart Agriculture", arXiv Computer Science, arXiv:2201.04754, Jan 2022, 45-pages.

Our sCrop: A Device for Automatic Disease Prediction, Crop Selection, and Irrigation in IoAT

sCrop Device Prototype with Irrigation

AgriloT	Ω:
Date: 20- June- 2019	
Your Crops:	
🕕 🕂	
Irrigation Timeline	
800	
100	1
3 ···· ····	
700 10:20 10:32 17:24 Date:	10 m
Health Check	174 KH
Identified Disease: Leaf Blight in Rice Image Scan Date: 20- June- 2019	
Was the prediction helpful: 🛞 🔅	. 1
Today	0
Bright and Sunny, Ideal for Paddy crops	\bigcirc
Live Sensor Feed	. 1
Change Language: English ef견	తలుగు
\circ	
sCrop	Ann

Healthy Tomato

Infected Tomato

sCrop Accuracy – 99.24%

Source: V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, "sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture", IEEE Sensors Journal (JSEN), Vol. 21, No. 16, August 2021, pp. 17525--17538, DOI: https://doi.org/10.1109/JSEN.2020.3032438.

Our eCrop: A Framework for Automatic Crop Damage Estimation

A. Mitra, A. Singhal, S. P. Mohanty, E. Kougianos, and C. Ray, "eCrop: A Novel Framework for Automatic Crop Damage Estimation in Smart Agriculture", Springer Nature Computer Science (SN-CS), Vol. 3, No. 4, July 2022, Article: 319, 16-pages, DOI: https://doi.org/10.1007/s42979-022-01216-8

ot

AI/ML in Self-driving Cars

mart Electroni

aboratory (S

What is AI/ML?

Basic Programming

```
Program to Check Even or Odd
#include <stdio.h>
int main() {
  int num;
  printf("Enter an integer: ");
  scanf("%d", &num);
  // True if num is perfectly divisible by 2
  if(num % 2 == 0)
     printf("%d is even.", num);
  else
     printf("%d is odd.", num);
  return 0;
```

Output Enter an integer: -7 -7 is odd.

Programming for Symbols / Shapes

Programming for Symbols / Shapes

Complex pictures or shapes

How to train a Computer?

What is Machine Learning?

 ML is the science of making computers learn and act like humans by feeding data and information without being explicitly programmed.

Deep Neural Network (DNN) – Train and Predict

PREDICT: Integrate trained models into applications.

Source: https://www.mathworks.com/campaigns/offers/mastering-machine-learning-with-matlab.html

AI/ML Types

41

Branches of Al

Artificial Neural Networks

Building a ML Model

- **Examples of Learning Algorithms:**
 - Linear Regression
 - Logistic Regression

- **kNN** ٠
- SVM
- etc.

= 0-0

Smart Electronic Systems

Laboratory (SESI

UNT DEPARTMENT OF SCIENCE & ENGIN

Building a DNN Model

Source: Book- Deep Learning with Python By F.Chollet

- Layers: Building Blocks of Deep Learning
- Models: Networks of Layers
- Loss function: Gets minimized during training.
- Optimizer: Says how the network gets updated. (Algorithm Part)

Which Model to Choose?

Data Sector	Use Case	Input	Transform	Neural Net
Text	Sentiment analysis	Word vector	Gaussian Rectified	RNTN or DBN (with moving window)
	Named-entity recognition	Word vector	Gaussian Rectified	RNTN or DBN (with moving window)
	Part-of-speech tagging	Word vector	Gaussian Rectified	RNTN or DBN (with moving window)
	Semantic-role labeling	Word vector	Gaussian Rectified	RNTN or DBN (with moving window)
Document	Topic modeling/ semantic hashing (unsupervised)	Word count probability	Can be Binary	Deep Autoencoder (wrapping a DBN or SDA)
	Document classification (supervised)	TF-IDF (or word count prob.)	Binary	Deep-belief network, Stacked Denoising Autoencoder
lmage	Image recognition	Binary	Binary (visible and hidden)	Deep-belief network
		Continuous	Gaussian Rectified	Deep-belief network
	Multi-object recognition			Convolutional Net, RNTN (image vectorization forthcoming)
	Image search/ semantic hashing		Gaussian Rectified	Deep Autoencoder (wrapping a DBN)
Sound	Voice recognition		Gaussian Rectified	Recurrent Net
				Moving window for DBN or ConvNet
Time Series	Predictive analytics		Gaussian Rectified	Recurrent Net
				Moving window for DBN or ConvNet

Source: https://www.quora.com/How-does-onechoose-between-various-Deep-Learning-Methods-inparticular-when-to-use-Deep-Belief-Networks-over-Recurrent-Neural-Network#!n=12

Neural Network – Activation Functions

Active Function Name	Formula	2D Graphical Representation 3D Graphical Repres		Description	
Linear	f(x) = x, for all x	2 1 -2 1-1 0 1 2 -2 -2		The activation of the neuron is passed on directly as the output	
Logistic (or sigmoid)	$f(x) = \frac{1}{1 + e^{-x}}$	-5 0 5		A S-shaped curve, very popular because it is Monotonous and has a simple derivative, Range of logistic or sigmoid function is from 0 to 1	
Hyperbolic Tangent	$f(x) = tanh(x)$ $f(x)$ $= \frac{1 + e^{-2x}}{1 + e^{2x}}$			A sigmoid curve similar to the logistic function. Often performs better than the logistic function because of its symmetry. Ideal for multilayer Perceptrons, particularly the hidden layers. Output value is between -1 and	
Source: https:/	/www.researchgate	Source: https://www.researchgate.net/figure/Three-of-the-Most-Commonly-Used-Neuron-Activation-Functions tbl1 317671554			

Neural Network – Activation Functions

Name	Plot	Equation	Derivative	
Sigmoid	Sigmoid	$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$	
Tanh	Tanh is -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})}$	$f^{\prime}(x)=1-f(x)^2$	
Rectified Linear Unit (relu)	Relu	$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	
Leaky Rectified Linear Unit (Leaky relu)	Leaky Rolu IA	$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \ge 0 \end{cases}$	

ML Algorithms

54

ML Algorithms – By Learning

Supervised: Logistic Regression & Back Propagation Neural Network

Unsupervised: Apriori & K-means

Semi-Supervised: Extension of Other Algorithms

Reinforcement: Monte Carlo, Q-Learning

Supervised Learning

 Supervised Learning is a method used to enable machines to classify/ predict objects based on labeled data fed to the machine.

Unsupervised Learning

https://www.educba.com/what-is-supervised-learning/

Reinforcement Learning

[Source: <u>https://www.analyticsvidhya.com/blog/2021/02/introduction-to-reinforcement-learning-for-beginners/</u>]

- Taking suitable action to maximize reward in a particular situation.
- No training data.
- Learn from experience

[Source: <u>https://www.geeksforgeeks.org/what-is-</u> reinforcement-learning/]

Types of DNN

79

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Various Options for ANN Models

Source: https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Artificial Neural Networks - Types

Deep-Feed Forward (DFF)

Support Vector Machine (SVM)

Boltzmann Machine (BM)

Deep Convolutional Network (DCN)

Deconvolutional Neural Turing Network (DN) Machine (NTM)

Types of DNN Networks

- Multilayer Perceptron (MLP)
- Convolutional Neural Networks (CNNs)
- Long Short Term Memory Networks (LSTMs)
- Recurrent Neural Networks (RNNs)
- Autoencoders
- Generative Adversarial Networks (GANs)
- Radial Basis Function Networks (RBFNs)
- Self Organizing Maps (SOMs)
- Deep Belief Networks (DBNs)
- Restricted Boltzmann Machines(RBMs)

83

Multilayer Perceptrons (MLPs)

- MLPs are the first place to start with deep learning.
- □ MLPs are feedforward neural networks with multiple layers of perceptrons with activation functions. MLPs input layer and an output layer are fully connected. They have multiple 🔭 hidden layers. They are used for speech-recognition, imagerecognition etc.

https://www.simplilearn.com/tutorials/deep-learningtutorial/deep-learning-algorithm

Convolutional Neural Networks

- CNNs(ConvNets) are made of multiple layers and are mainly used for image processing and object detection. First CNN (LeNet) was made in 1988.
- CNNs are mainly used to identify satellite images, medical images, detect anomalies etc.

https://www.simplilearn.com/tutorials/deep-learningtutorial/deep-learning-algorithm

Long Short Term Memory Networks (LSTMs)

□ A type of Recurrent Neural Network (RNN) that can learn and memorize long-term dependencies. It remembers the past.

LSTMs are useful in time-series prediction. LSTMs are made of layers which are mainly known as gates. LSTMs are also used for speech recognition, music composition etc.

First, they forget irrelevant parts of the previous state
Next, they selectively update the cell-state values
Finally, the output of certain parts of the cell state

Recurrent Neural Networks (RNNs)

- RNNs have outputs from the previous inputs when they have hidden state which acts in remembering.
- □ Computation is slow and it's remembering power is lower than LSTM. It can't be used for very long sequence. RNNs are commonly used for image captioning, time-series analysis, natural-language processing, handwriting recognition, and machine translation.

Generative Adversarial Networks (GANs)

□ GANs are generative adversarial deep learning networks. It generates new data. It is made of a generator, which learns to generate fake data, and a discriminator, which competes with the G to make better false information.

https://www.simplilearn.com/tutorials/deep-learningtutorial/deep-learning-algorithm

Autoencoders

- In simple term, it copies the input to its output once it learns how to change. It uses unsupervised learning in its backpropagation algorithm. A not clearly visible image can be visible by feeding the image into the autoencoder neural network.
- Steps: 1. Encode the image (Latent vector). 2. Reduce the size of the input into a smaller representation. 3. Decodes the image to generate the reconstructed image.

Tools for Al

90

Data Visualization in Deep Learning

§4 WHY

Why would one want to use visualization in deep learning?

Interpretability & Explainability Debugging & Improving Models Comparing & Selecting Models Teaching Deep Learning Concepts

§6 WHAT

What data, features, and relationships in deep learning can be visualized?

Computational Graph & Network Architecture Learned Model Parameters Individual Computational Units Neurons In High-dimensional Space Aggregated Information

§8 WHEN

When in the deep learning process is visualization used? During Training After Training

5 WHO Who would use and benefit from visualizing deep learning? Model Developers & Builders Model Users

Non-experts

§7 HOW

How can we visualize deep learning data, features, and relationships?

Node-link Diagrams for Network Architecture Dimensionality Reduction & Scatter Plots Line Charts for Temporal Metrics Instance-based Analysis & Exploration Interactive Experimentation

S9 WHERE

Where has deep learning visualization been used?

Application Domains & Models A Vibrant Research Community

https://medium.com/multiple-views-visualization-research-An overview of our interrogative survey, and how each of the six questions, "why, who, what, how, when, and where," explained/visualization-in-deep-learning-b29f0ec4f136

Artificial Intelligence - Prof./Dr. Saraju Mohanty

91

ML Languages

- Python: a popular language with high-quality machine learning and data analysis libraries
- C++: a middle-level language used for parallel computing on CUDA
- R: a language for statistical computing and graphics
 MATLAB: a language for multidiscipline computing

Source: https://www.altexsoft.com/blog/datascience/the-best-machine-learning-tools-experts-top-picks/

ML Tools / Frameworks

- TensorFlow
- PyTorch
- Keras
- Chainer
- ONNX
- MATLAB

TensorFlow

- Most Popular Deep Learning Framework
- Invented by Google
- Python works Best with Tensorflow
- C/C++ and JAVA also works.
- Cloud & Edge Computing
- Static Computational Graph
- Good Choice for Cross-platform Application
- Slowest in GPU as it was developed to work In TPU

PyTorch

- Next important Framework
- Lower-level API like TensorFlow
- Developed for Facebook
- Dynamic Computational Graph
- Debuggers like PyCharm used
- Best for Prototyping
- Data parallelism & Distributed learning supported
- Strong GPU acceleration

Keras

- Much easier than TensorFlow
- Readable
- High level API
- Lower-level libraries from either TensorFlow or Theano
- Handles a huge data set
- Single line functions are available easier than any lowerlevel deep learning framework
- Very good start
- Readability makes it more understandable

Chainer

- Chainer was predominant before PyTorch
- Basic structure same as PyTorch
- Written in Python with NumPy and CuPy libraries
- Fastest among other Python frameworks

Onnx

- ONNX product of Microsoft and Facebook search for open format deep learning models
- Bridge between different models to transfer from one to another
- A model is trained in one framework, ONNX transfers it to another one
- TensorFlow or Keras not supported by it
- PyTorch supports

TensorFlow Vs MATLAB

- MATLAB's deep learning toolbox good choice
- MATLAB advantage : few lines codes
- Models deployable in embedded system also without much expertise
- TensorFlow community support is better.
- Not all toolbox are free in MATLAB
- MATLAB Models imported or exported to Keras, TensorFlow or PyTorch through ONNX
- MATLAB is less customizable like TensorFlow or PyTorch
- First getting an idea in MATLAB is easier than others

Who Use What?

- A beginner : Keras
- Researchers : Keras/ PyTorch/ TensorFlow/ MATLAB
- AWS : Gluon or MXNet
- Google Cloud : TensorFlow

Results May Vary Depending on the Tool

Smart Electronic Systems Laboratory (SESL) UNT Distribution of COMPACE AND ADDRESS ADD

7/10/2023

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Evaluation Metrics

- Evaluation Metrics explain the performance of a model.
- <u>Building machine learning models</u> works on a constructive feedback principle.
 - Build a model.
 - Get feedback from metrics.
 - Make improvements and continue until you achieve a desirable accuracy.
- Building a predictive model is not the motive.
- Creating and selecting a model with high accuracy on out of sample data.
- It is crucial to check the accuracy of your model prior to computing predicted values.
- Selection of metric depends on type of model and implementation plan.

Source: https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/

126

ML Models: Performance Analysis Metrics

Root-Mean Square Error (RMSE): Represents departure of metamodel from real-simulation (golden). Smaller RMSE means more accurate:

Overview - Evaluation Metrics Used

Confusion Matrix

Accuracy

- Precision
- F1-Score

AUC-ROC

- N X N matrix \rightarrow N = number of predicted classes
 - Positive Class → Non-normal Class
 - Negative Class \rightarrow Normal Class
- Accuracy : proportion of total number of correct predictions.
- **Positive Predictive Value or Precision** : proportion of correctly identified positive cases.
- **Negative Predictive Value** : proportion of correctly identified negative cases.
- Sensitivity or Recall : proportion of correctly identified actual positive cases.
- Specificity : proportion of correctly identified actual negative cases.

	Prediction				
Truth	TP	FN			
Iruth	FP	TN			

Hardware for Al

136

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Artificial Intelligence Technology

Neuromorphic Computing or Brain-Inspired Computing

Application 1: Integrate into assistive glasses for visually impaired people for navigating through complex environments, even without the need for a WiFi connection.

Application 2: Neuromorphic-based, solar-powered "sensor leaves" equipped with sensors for sight, smell or sound can help to monitor natural disasters.

Source: https://blogs.scientificamerican.com/observations/brain-inspired-computing-reaches-a-new-milestone/

138

Brain Inspired Computing

- > Basic computational unit of the brain is a **neuron** \rightarrow 86B neurons in the brain
- Neurons are connected with nearly 10¹⁴ 10¹⁵ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Source: https://www.rle.mit.edu/eems/wp-content/uploads/2019/06/Tutorial-on-DNN-01-Overview.pdf

Neuromorphic Computing or Brain-Inspired Computing

Source:

https://www.qualcomm.com/news/onq/2013/10/10/introducin g-qualcomm-zeroth-processors-brain-inspired-computing

	AFR Inputs (Dendrites)					Processing Powers (Source: MIT Technical Review)		
					Neuromorphic	Types of Chips	Functions	Applications
AER Inputs (Dendrites)	Short Term Plasticity Synapse ArrayLong Term Plasticity Synapse Arrayand additional additional Supervised additional stepsedSTPS-ControlLTPS-ControlMits ControlState Control	Long Term Plasticity	De-multiplexer	na Array	Architecture	Traditional Chips (von Neumann Architecture)	Reliably make precision calculations	Any numerical problem, Complex problems require more amount of energy
		Som	AER Out	Neuromorphic Chips	Detect and Predict Patterns in complex data using minimal energy	Applications with significant visual/ auditory data requiring a system to adjust its behavior as it interacts with the world		

Power Consumption Comparison

Biological and silicon neurons have much better power and space efficiencies than digital computers.

Source: https://www.researchgate.net/figure/Biological-and-silicon-neurons-have-much-better-power-and-space-efficiencies-than-digital_fig1_51710519

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Laboratory (SES

UNT

Computer Versus the Human Brain: Speed

- Computer has huge advantages over the brain in the speed of basic operations.
- Typical PCs can perform elementary arithmetic operations, such as addition, at a speed of 10 billion operations per second.
- We can estimate the speed of elementary operations in the brain by the elementary processes through which neurons transmit information and communicate with each other.
- > The highest frequency of neuronal firing is about 1,000 spikes per second.
- > The fastest synaptic transmission takes about 1 millisecond.
- Both in terms of spikes and synaptic transmission, the human brain can perform at most about a thousand basic operations per second, or 10 million times slower than the computer.

Source: https://nautil.us/issue/59/connections/why-is-the-human-brain-so-efficient

143

Computer Versus the Human Brain: Precision

- Computers have huge advantages over the brain in the precision of basic operations.
- Computers can represent quantities (numbers) with any desired precision according to the bits (binary digits, or 0s and 1s) assigned to each number.
- ➢ For instance, a 32-bit number has a precision of 1 in 232 or 4.2 billion.
- Most quantities in the human nervous system (for instance, the firing frequency of neurons, which is often used to represent the intensity of stimuli) have variability of a few percent due to biological noise.
- Human brain has a precision of 1 in 100 at best, which is millionsfold worse than a computer.

Source: https://nautil.us/issue/59/connections/why-is-the-human-brain-so-efficient

Silicon Neurons

- Silicon neurons emulate the electro-physiological behavior of real neurons.
- This may be done at many different levels:
 - 1) simple models (like leaky integrate-and-fire neurons)
 - 2) models emulating multiple ion channels
 - 3) detailed morphology
- Silicon neurons may be implemented in digital or analog, or mixed signal (digital and analog) technologies.
- Real (and silicon) neurons have a number of active parts: one dissection of a neuron is into synapses, dendrites, soma, and axon.
- Not all silicon neurons actually implement all of these elements: synapses in particular are sometime placed on additional chips.

Source: http://www.scholarpedia.org/article/Silicon_neurons

Cognitive Computing

The TabulatingEra The ProgrammingEra (1900s – 1940s) (1950s – present)

The CognitiveEra (2011 –)

Cognitive Computing: Not just "right" or "wrong" anymore but "probably".

- □ Systems that learn at scale, reason with purpose and interact with humans naturally.
- □ Learn and reason from their interactions with humans and from their experiences with their environment; not programmed.

Usage:

- Al applications
- Expert systems
- Natural language processing
- Robotics
- Virtual reality

Source: http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf

146

Some Hardware for Deep Learning

Source: R. Fernandez Molanes, K. Amarasinghe, J. Rodriguez-Andina and M. Manic, "Deep Learning and Reconfigurable Platforms in the Internet of Things: Challenges and Opportunities in Algorithms and Hardware," *IEEE Industrial Electronics Magazine*, vol. 12, no. 2, pp. 36-49, June 2018.

148

Computing Technology - Current and Emerging

Source: Mohanty ISCT 2019 Keynote

FPGAs and Beyond: SoCs, MPSoCs, RFSoCs, and ACAPs

Source: https://www.digikey.com/en/articles/fundamentals-of-fpgas-part-4-getting-started-with-xilinx-fpgas

The capabilities of the programmable device can be from modest to high:

- Traditional FPGAs
- SoCs (FPGA programmable fabric with a single hard core processor)
- MPSoCs (FPGA programmable fabric with a multiple hard core processors)
- RFSoCs (MPSoCs with RF capability)
- ACAPs (Adaptive Compute Acceleration Platforms)

FPGAs and Beyond Trend

UNT EST, 1890

Xilinx - SoC, MPSoC, and RFSoC

Source: https://www.digikey.com/en/articles/fundamentals-of-fpgas-part-4-getting-started-with-xilinx-fpgas

Xilinx FPGAs - Adaptive Compute Acceleration Platform (ACAP)

Source: https://www.digikey.com/en/articles/fundamentals-of-fpgas-part-4-getting-started-with-xilinx-fpgas

Xilinx FPGA - Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) Modules

Source: https://www.eetimes.com/subaru-replaces-asics-with-xilinx-fpga-for-latest-vision-based-adas/

Tensor Processing Unit (TPU)

DDR3 DRAM Chips

30 GIB/s 30 GIB/s Weight FIFO (Weight Fetcher) DDR3 Interfaces Matrix Multiply Unified 167 10 GiB/s Buffer Systolic Data GiB/s Unit 14 GiB/s 0 5 14 GiB/s (64K per cycle) (Local 3 0 Activation Setup Storage) Accumulators Activation Instr 167 GiB/s Normalize / Poo Cff-Chip I/O Data Buffer Computatio Contrai

Not to Scale

Source: https://fossbytes.com/googles-home-made-ai-processor-is-30x-faster-than-cpus-and-gpus/

7/10/2023

ML Hardware – Cloud and Edge

Product	Cloud or Edge	Chip Type
Nvidia - DGX series	Cloud	GPU
Nvidia - Drive	Edge	GPU
Arm - ML Processor	Edge	CPU
NXP - i.MX processor	Edge	CPU
Xilinx - Zinq	Edge	Hybrid CPU/FPGA
Xilinx - Virtex	Cloud	FPGA
Google - TPU	Cloud	ASIC
Tesla - Al Chip	Edge	Unknown
Intel - Nervana	Cloud	CPU
Intel - Loihi	Cloud	Neuromorphic
Amazon - Echo (custom AI chip)	Edge	Unknown
Apple - A11 processor	Edge	CPU
Nokia - Reefshark	Edge	CPU
Huawei - Kirin 970	Edge	CPU
AMD - Radeon Instinct MI25	Cloud	GPU
IBM - TrueNorth	Cloud	Neuromorphic
IBM - Power9	Cloud	CPU
Alibaba - Ali-NPU	Cloud	Unknown
Qualcomm AI Engine	Edge	CPU
Mediatek - APU	Edge	CPU

Source: Presutto 2018: https://www.academia.edu/37781087/Current_Artificial_Intelligence_Trends_Hardware_and_Software_Accelerators_2018

Computing Technology - IoT Platform

Source: https://www.sparkfun.com/products/13678

Source: Mohanty ISCT 2019 Keynote

Source: http://www.lattepanda.com

Al Challenges

Challenges of Data in IoT/CPS are Multifold

Saraju Mohanty

7/10/2023

Deep Neural Network (DNN) -Resource and Energy Costs

PREDICT: Integrate trained models into applications.

Source: https://www.mathworks.com/campaigns/offers/mastering-machine-learning-with-matlab.html

- size, the learning rate, and initial weights.
- High computational resource and time: For sweeping through the parameter space for optimal parameters.
- DNN needs: Multicore processors and batch processing.
- > DNN training happens mostly in cloud not at edge or fog.

DNN: Underfitting and Overfitting Issues

Source: https://medium.freecodecamp.org/deep-learning-for-developers-tools-you-can-use-to-code-neural-networks-on-day-1-34c4435ae6b

DNN - Overfitting or Inflation Issue

- DNN is overfitted or inflated If the accuracy of DNN model is better than the training dataset
- DNN architecture may be more complex than it is required for a specific problem.
- Solutions: Different datasets, reduce complexity

Source: www.algotrading101.com

Source: https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family

DNN - Class Imbalance Issue - Solutions		
Exploring different ML algorithms		
-Collecting more data		
-Modifying class weights		
Methods to handle unbalanced data sets – Penalizing the models		
-Using anomaly detection techniques		
-Using oversampling techniques		
Using under sampling techniques		
Source: https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family		

Machine learning: "I'm as intelligent as human beings". Also machine learning:

DNNs are not Always Smart

DNNs are not Always Smart

DNNs can be fooled by certain "learned" (Adversarial) patterns ...

Source: Nguyen, et al. 2014 - Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Source: Corcoran Keynote 2018

Source: Nguyen, et al. 2014 - Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

Source: Corcoran Keynote 2018

DNNs are not Always Smart

Why not use Fake Data?

"Fake Data" has some interesting advantages:

- Avoids *privacy issues* and side-steps *new regulations* (e.g. General Data Protection Regulation or GDPR)
- Significant cost reductions in data acquisition and annotation for big datasets

Source: Corcoran Keynote 2018

178

Data & Privacy Dilemma in Al

AI/ML - Vulnerability

- Key vulnerabilities of machine learning systems
 - ML models often derived from fixed datasets
 - Assumption of similar distribution between training and real-world data
 - Coverage issues for complex use cases
 - Need large datasets, extensive data annotation, testing
- Strong adversaries against ML systems
 - ML algorithms established and public
 - Attacker can leverage ML knowledge for Adversarial Machine Learning (AML)
 - Reverse engineering model parameters, test data Financial incentives
 - Tampering with the trained model compromise security

Source: Sandip Kundu ISVLSI 2019 Keynote.

181

AI/ML – Cybersecurity Issue

Source: D. Puthal, and S. P. Mohanty, "Cybersecurity Issues in Al", IEEE Consumer Electronics Magazine (MCE), Vol. 10, No. 4, July 2021, pp. 33--35.

182

AI/ML Models - Classification of Security and Privacy Concerns

- Attacker's Goals
 - extract model parameters (model extraction)
 - extract private data (model inversion)
 - compromise model to produce false positives/negatives
- (model poisoning)
 - produce adversary selected outputs
- (model evasion)
 - render model unusable

- Attacker's Capabilities
 - access to Black-box ML model
 - access to White-box ML model
 - manipulate training data to
- introduce vulnerability
 - access to query to ML model
 - access to query to ML model with confidence values
 - access to training for building model
 - find and exploit vulnerability during
- classification

Source: Sandip Kundu ISVLSI 2019 Keynote.

Al Security - Attacks

Source: Sandip Kundu ISVLSI 2019 Keynote.

Al Security - Trojans in Artificial Intelligence (TrojAl)

Adversaries can insert **Trojans** into Als, leaving a trigger for bad behavior that they can activate during the Al's operations

Source: https://www.iarpa.gov/index.php?option=com_content&view=article&id=1150&Itemid=448

Wrong ML Model \rightarrow Wrong Diagnosis

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Smart Electronic S

Laboratory (SE

UNT DEPARTM
Data Quality Assurance in IoT Enabled System

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Overview - AI & Data

Smart Electronic

UNT

Laboratory (SE

189

Overview - Research Need

- Fake data (especially deepfake) need to be detected.
- Edge friendly deepfake image/video detection system.
- Solutions for Data Scarcity (almost no data) related problem.
- Solutions for Insufficient Data (not enough data) related problem.

Contribution I - ML/DL Methods for Fake Data Detection on Edge Devices

- Detection of Deepfake Videos [9]
- Detection of Deepfake Images [6]

Contribution III - DL-based Solution for Data Scarcity Problem on Edge Devices

• eCrop [4]

Contribution II - A Real-Life Application Scenario for Deepfake Image Detection

- iFace [8]
- Deep Morphed Deepfake Image Detection [7]
- iFace 1.1 [3]

Contribution IV - Verification of the Effect of Data Insufficiency on Accuracy of a DL Model

• aGROdet [1]

Contribution I - Data Forgery Detection

Detection of Deepfake Videos [9]

A high accuracy lower computation novel method for social media deepfake video detection.

Detection of Deepfake Images [6]

A ML-based novel method for deepfake image detection at edge device which requires less than 30 minutes training time.

Sources:

- 1) A. Mitra, S. P. Mohanty, P. Corcoran, and E. Kougianos, "A Machine Learning based Approach for Social Media Deepfake Video Detection through Key Video Frame Extraction", Springer Nature Computer Science Journal, 2021, Vol. 2, No. 2, Article: 99, 18-pages, DOI: <u>https://doi.org/10.1007/s42979-021-00495-x</u>.
- 2) Alakananda Mitra, Saraju P. Mohanty, Peter Corcoran, and Elias Kougianos, "EasyDeep: An IoT friendly robust detection method for GAN generated deepfake images in social media", In Proceedings of the 4th IFIP International Internet of Things (IoT) Conference (IFIP-IoT), 2021, DOI: https://doi.org/10.1007/978-3-030-96466-5_14.

Contribution II - Data Falsification Resilience

Data Falsification – Making robust ID for Smart Cities [3], [7], [8].

A facial authentication-based digital ID for Smart Cities which is robust against deepfake attack and presentation attack.

Sources:

- 1) A. Mitra, D. Bigioi, S. P. Mohanty, P. Corcoran, and E. Kougianos, "iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities", IEEE Access Journal, Vol. 10, 2022, pp. 71791–71804, DOI: <u>https://doi.org/10.1109/ACCESS.2022.3187686</u>.
- 2) Alakananda Mitra, Saraju P. Mohanty, Peter Corcoran, and Elias Kougianos, "Detection of deep-morphed deepfake images to make robust automatic facial recognition systems", In Proceedings of the 19th OITS International Conference on Information Technology (OCIT), 2021, DOI: https://doi.org/10.1109/OCIT53463.2021.00039. (Awarded Best Paper)

Contribution III - Data Scarcity Overcoming

Data Scarcity - Estimation of Crop Damage due to Natural Causes [4].

An automatic and highly accurate DL-based solution for estimation of crop damage due to natural causes at edge devices.

Source: A. Mitra, A. Singhal, S. P. Mohanty, E. Kougianos, and C. Ray, "eCrop: A Novel Framework for Automatic Crop Damage Estimation in Smart Agriculture", Springer Nature Computer Science (SN-CS), Vol. 3, No. 319, 2022, Article: NN, 16-pages, DOI: https://doi.org/10.1007/s42979-022-01216-8.

Contribution IV - Data Insufficiency Overcoming

 Data Insufficiency - Plant Disease Detection & Leaf Damage Estimation [1].

An automatic and accurate method for plant disease detection and leaf damage estimation at edge devices to take proper control measures and save time, money, and secondary plant losses.

Source: A. Mitra, S. P. Mohanty, E. Kougianos, "aGROdet: A Novel Framework for Plant Disease Detection and Leaf Damage Estimation", in *Proceedings* of the IFIP International Internet of Things Conference (IFIP-IoT), 2022, pp. 3--22, DOI: <u>https://doi.org/10.1007/978-3-031-18872-5_1</u>.

Fake Data – 'Deepfake'

- Deepfake = Deep Learning + Fake
- Created by Deep Learning Networks
 - Autoencoder
 - Generative Adversarial Networks (GANs)
- Sophisticated Images
- Make Face Morphing Easy and Realistic
- Rampant in Social Media and Websites
- Change the Perception of TRUTH

Social Media Deepfake Video Detection

Classifier

EasyDeep

GAN Generated Deepfake Image Detection at IoT Platform

EasyDeep: GAN Generated Deepfake Detection

Digital ID Smart City

- Bio-metrics Based
- Person Specific

Unique

• No Need to Keep Any

Secret Key

[Source: Alakananda Mitra, Saraju P. Mohanty, Peter Corcoran, and Elias Kougianos, "iFace: A Deepfake Resilient Digital Identification Framework for Smart Cities", In Proceedings of IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), 2021, DOI: <u>https://doi.org/10.1109/iSES52644.2021.00090</u>.]

Challenges of Digital ID

iFace : Digital ID System for Smart City

- Facial Biometric Based
- Two Phases
 Registration Phase
 Authentication Phase
- Prerequisite
 Neutral Frontal Face (NFF) Photo
 Photo Taken at Edge
 Photo Taken at Each Time

iFace: Registration & Authentication Phases

FEDERATED LEARNING

- Quality data exists at different location on various edge devices.
- Data privacy laws control the movement of data.
- FL is the way to provide ML solution without breaking privacy laws.

What is FL ?

- Federated Learning is way of model training in ML for heterogeneous and distributed data.
- It preserves the Privacy of data.
- Data does not come to the Model. Here Model is taken to the data.

Features & Application of FL

Artificial Intelligence - Prof./Dr. Saraju Mohanty

FL In Modern Network

Difference Between ML & FL

Horizontal FL System

(1) Train global model in the server.(2) Deploy global model to edge devices.

(3) Optimize model from each edge device.

(4) Upload locally trained model update.

(5) Average the update values and apply the average to the global model.

(6) Repeat step 2 to step 5.

253

Conclusion

255

Does Smart Mean Intelligence?

Artificial Intelligence - Prof./Dr. Saraju Mohanty

257

Artificial Intelligence - Prof./Dr. Saraju Mohanty

Take Away

- What are Artificial Intelligence/Machine learning/ Deep Learning?
- Types of ML Algorithm & DNNs.
- How to make a ML model & DNN pipeline?
- Al Tools
- Evaluation Matrices
- Al Hardware
- Challenges of AI

258

Conclusion

Data is the most important factor in AI.

- Data quality needs to be assured.
- Discussed various fake data (image/video) detection method.
- Data privacy in AI is a big challenge.

□FL can be the future direction of AI learning to maintain

data privacy.

Future Research Direction

Future Directions

- Improvements in computing power.
- More Al-enabled chips.
- Progress in GPUs & TPUs.
- Advances in data availability.
- Edge oriented algorithms & Models.
- Improve Healthcare
- Improve IoT devices
- So on.

261

Key References

- A. Mitra, S. P. Mohanty, P. Corcoran, and E. Kougianos, "A machine learning based approach for social media deepfake video detection through key video frame extraction", Springer Nature Computer Science Journal, 2021, vol. 2, no. 2, article: 99, 18-pages, DOI: <u>https://doi.Org/10.1007/s42979-021-00495-x</u>
- Alakananda Mitra, Saraju P. Mohanty, Peter Corcoran, And Elias Kougianos, "EasyDeep: An IoT Friendly Robust Detection Method For GAN Generated Deepfake Images In Social Media", in *Proceedings Of The 4th FIP International Internet of Things (IoT) Conference* (*IFIP-IoT*), 2021.
- Alakananda Mitra, Saraju P. Mohanty, Peter Corcoran, And Elias Kougianos, "iFace: A Deepfake Resilient Digital Identification Framework For Smart Cities", in *Proceedings of IEEE International Symposium On Smart Electronic Systems (iSES)*, 2021, DOI: <u>Https://Doi.Org/10.1109/Ises52644.2021.00090</u>.
- Z. Li, V. Sharma, and S. P. Mohanty, "Preserving Data Privacy via Federated Learning: Challenges and Solutions", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 3, May 2020, pp. 8--16.

