
 

Abstract—Convolutional Neural Networks (CNNs) have 

shown a great potential in different application domains 

including object detection, image classification, natural 

language processing, and speech recognition. Since the 

depth of the neural network architectures keep growing and 

the requirement of the large-scale dataset, to design a high-

performance computing hardware for training CNNs is 

very necessary. In this paper, we measure the performance 

of different configuration on GPU platform and learning 

the patterns through training two CNNs architectures, 

LeNet and MiniNet, both perform the image classification. 

Observe the results of measurements, we indicate the 

correlation between L1D cache and the performance of 

GPUs during the training process. Also, we demonstrate 

that L2D cache slightly influences the performance. The 

network traffic intensity with both CNN models shows that 

each layer has distinct patterns of traffic intensity. 

I. INTRODUCTION 

Deep Learning techniques became more and more popular, 

because it has shown a great deal of success in serval domains 

including object detection, image classification, nature 

language processing, and speech recognition [1]. However, the 

fundamental ideas have stated about three-decade ago [2]. The 

current success of deep learning benefited from two main 

reasons: 1) the development of the Internet, which produces 

massive number of data; 2) the computation capability of 

hardware grows rapidly, which can deal large-scale training 

data efficiently. 

Deep learning is one class of machine learning algorithms, 

which can train a non-linear function model by multiple layers 

of neurons. In this paper, we only consider a special class of 

deep learning architectures, called Convolutional Neural 

Networks (CNNs). CNNs is good at object detection, image 

classification, natural language processing, and speech 

recognition.  

 CNN architectures are composed of several layers and each 

layer takes three-dimensional data as input then implements a 

three-dimensional filter or weight to produce a three-

dimensional result which will be the input for the next layer. 

The first layer corresponds to input data and the output of the 

last layer corresponds to the predicted output. These filter or 

 
 

weight for each layer can be updated by backpropagation 

through the learning process. Through the forward pass with 

current weight, the predicted result can be produced, then 

compare to the label and gain the gradient of prediction error. 

Through the backpropagation, the gradient of prediction error 

passed backwards to the network. By using these gradients, the 

weight of each layer can be updated [2].  

 Training speed of CNNs  highly depends on the computation 

capability of hardware and the size of the dataset. Since the 

most computations of CNN training are involve matrix dot 

products and vector dot product at each layer. Good news is, 

these computations exhibit data parallelism. A GPU-based 

manycore platform is more suitable for these tasks, and it can 

significantly accelerate the training speed [3]. So, it’s the most 

preferred choice to implement different types of deep neural 

network architectures. TensorFlow and Caffe are two popular 

frameworks for deep learning and they both implemented in 

GPU-based systems [4][5]. 

The remainder of the paper is organized as follows. In 

Section 2, we provide an overview of the CNNs and the details 

of a training process. Also, we present the dataset we use and 

the architectures we choose. In Section 3, we discuss the results 

of the experiment to demonstrate the correlation between each 

factor and performance. Finally, Section 4 concludes the paper 

by summarizing the results and pointing out the directions of 

the future work. 

II. CONVOLUTIONAL NEURAL NETWORKS 

In this section, the fundamental ideas of CNNs and the 

mathematic theory will be stated  

A. Overview of CNNs 

A typical CNN architecture is composed of serval different 

layers which including convolutional layers, pooling layers, and 

fully connected layers. Convolutional layer: The objective of a 

Convolutional layer is to extract features of the input volume. 

Which means transform a low-level representation into a high-

level representation. Also, we only connect part of the image to 

the next layer because if all the pixels of the input are 

connected, it will be too expensive. During the forward pass, 

apply dot products between a receptive field and a filter and 

produces a feature map. Then we slide the filter overall 

receptive field with the same filter and generate a set of feature   
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Figure 1. Overview of the CNN architecture for digit classification 

[6]. 

Table 1.  Layer configurations for LeNet 

Layer Input Filter Output 

Conv1 28*28*1 5*5*6 24*24*6 

Pool1 24*24*6 2*2*1 12*12*6 

Conv2 12*12*6 5*5*6*16 8*8*16 

Pool2 8*8*16 2*2*1 4*4*16 

Conv3 4*4*16 4*4*16*120 120 

Fully1 120 120*86 86 

Fully2 86 86*10 10 

 

map. After that, an element-wise non-linear activation function 

will be applied to the set of feature map and because of input of 

the next layer. 

Pooling layer: Normally, there’s two types of pooling layer  

base on the operation it uses. Max operation generates max 

value from the receptive field and average operation generates 

average value from the receptive field. Pooling layer performs 

a function to reduce the spatial dimensions of the input, and the 

the computational complexity of the model. Also, it can avoid 

the overfitting. 

Fully connected layer: Fully connected layers always at the 

end of the network, since the input already though the 

convolutional layers and pooling layers, the volume of neuron 

has significantly reduced. So, this layer can connect every 

neuron in one layer to every neuron in another layer. The last 

fully-connected layer classifying the generated features of the 

input image into various classes based on the training dataset. 

B. Dataset and Architectures 

In the work, we consider one of the most widely used image 

classification dataset, namely MNIST [7]. The MNIST database 

of handwritten digits, has a training set of 60,000 examples, and 

a test set of 10,000 examples. It is a subset of a larger set 

available from NIST. The digits have been size-normalized and 

centered in a fixed-size image. 

We used two architecture, namely LeNet and MiniNet, and 

trained with MINST dataset. 

LetNet: exclude the input layer and output layer, LetNet has 

seven layers, which are three convolutional layers and two max 

pooling layers and two fully connected layers. The 

configuration for each layer shows in Table 1 [8]. 

MiniNet: exclude the input layer and output layer, the 

architecture only has three layers, so we call it MiniNet. These 

three layers are convolutional layers, max pooling layers and 

fully connected layers and the configurations of each layer can  

 
Table 2. Layer configurations for MiniNet 

Layer Input Filter Output 

Conv1 28*28*1 5*5*6 24*24*6 

Pool1 24*24*6 4*4*1 6*6*6 

Fully1 6*6*6 6*6*6*10 10 

 

be found in Table 2. Both neural networks are trained by 

MNIST dataset. The LeNet is more complex than the MiniNet. 

LeNet has three convolutional layers and has total 238 filters, 

MiniNet only has one convolutional layer and has 17 filters. 

C. Training Procedures 

Training a CNN in another word, is training the weights of 

each layer of CNN. Like we mentioned above, to update the 

weights, the backpropagation algorithm is used. Before that, we 

need to get the prediction error from pass forward with current 

weights. 

 

Perform a pass forward on the convolutional layer as       

follows: 

 

𝑎(𝑙) = 𝜎(𝑧(𝑙)) = 𝜎(𝑎(𝑙−1) ∗ 𝑊(𝑙) + 𝑏(𝑙))          (1) 

 

Which 𝑎(𝑙)  is an output of layer 𝑙 , 𝜎  is activation function, 

𝑊(𝑙), 𝑏(𝑙) is weight and bias of layer 𝑙. ∗ indict the convolution 

operator. 

 Perform a backpropagation on the convolutional layer as 

follows: 

 

𝛿(𝑙) = ((𝑊(𝑙))
𝑇

𝛿(𝑙+1)) ∙ 𝜎′(𝑧(𝑙))                 (2) 

∇𝑊(𝑙) = 𝛿(𝑙+1)(𝑎(𝑙))
𝑇
                           (3) 

∇𝑏(𝑙) = 𝛿(𝑙+1)                                   (4) 

 

Which δ(l) is error for an l -th layer.  ∇W(l)  and ∇b(l)  are 

gradients for the l-th layer. 
 Base on the equation (1), (2), (3), (4), obviously, the pass 

forward and backpropagation require lots of matrix 

computations and a lot of data parallelism exist. 

 For both pass forward and backpropagation, convolutional 

layers contain the most expensive operations. Each convolution 

operation requires multiple dot products of the receptive field 

and filter values. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

To do this experiment, we used GPGPU-sim, a well-known 

detailed, cycle-level simulator modeling contemporary 

graphics processing units (GPUs) running GPU computing 

workloads written in CUDA or OpenCL [9] [10][11]. We 

customize the configuration of GPGPU to exam the correlations 

between different factors. Table.3 shows the details of the 

configurations. 

Form the Fig.2 to Fig.9. left part of the figures presents the 

forwarding pass, and right part of the figures presents the 

backpropagation. And the bar of “c” presents the IPC number  

 



Table 3.System configuration 

Configuration L1D L2D Network 

Baseline 32 64 Butterfly 

Perfect 32 64 Perfect 

L1D_32_L2D_32 32 32 Butterfly 

L1D_64_L2D_32 64 32 Butterfly 

L1D_64_L2D_64 64 64 Butterfly 

 

 
Figure 2. IPC for training the LeNet with Mesh Network and Perfect 

Network. 

 
Figure 3. IPC for training the MiniNet with Mesh Network and 

Perfect Network. 

of convolutional layer, “p” means pooling layer and “f” means 

fully connected layer.  

A. Mesh Network vs Perfect Network 

According to the Fig.2 and Fig.3, we see the performance of 

the Perfect Network is better than Mesh Network during the 

convolutional layers, however, the Mesh Network perform 

better than Perfect Network when computing the fully 

connected layers. Also, we can see, when the computation size 

increase, the performance of Perfect Network gives 

significantly raise.  Since the Perfect Network doesn't have any 

delay during on-chip data transmission, so the result indicates 

the convolutional layers request lots of data transmission, and 

fully connected layer request less data transmission. 

B. L1 Cache Configuration 

According to Fig.4 we can see, when the L1D cache increase, 

the performance in the backpropagate stage is better. 

Especially, the performance of max pooling layer 1 (denote as  

 
Figure 4. IPC for training the LeNet with different L1D cache 

Configuration. 

 

 
Figure 5. IPC for training the MiniNet with different L1D cache 

Configuration. 

p1) raised significantly. Also, Fig.5 shows the same result as 

the Fig. 4 except the change rate is smaller than Fig.5. So, we 

think the L1D cache influence the performance of CNN. Which 

increase the L1D cache will raise the performance of both CNN 

architectures, especially, when the size of CNN architecture is 

large. 

C. L2 Cache Configuration 

To test that how L2 cache impacts the performance of both 

CNN architectures, we set up the different L2D cache. Fig.6 

shows the performance of convolutional layer 1 (denote as c1) 

raised and convolutional layer 2 (denote as c2), max pooling 

layer 1 and 2 (denote as p1, p2) dropped， but the changes are 

very slight. In Fig.7, the performance of each layer in MiniNet 

is exactly the same. According to these experimental data, we 

can conclude since we double the L2D cache for both small and 

large CNN architectures, the performances almost remained the 

same, there is no correlation between IPC and L2D cache. 

D. Analysis of Inject Rate 

We compare the network traffic intensity (measured in 

normalized flits injection rate) with different CNN layers in 

Fig.8 and Fig.9. Both in forward pass and backpropagation, the 

figures show, that convolutional layers (denoted as c) have  

 



 
Figure 6. IPC for training the LeNet with different L2D cache 

configuration. 

 
Figure 7. IPC for training the MiniNet with different L2D 

cache configuration. 

 

highest injection rates. In Fig.8, the fully connected layer 1 

(denoted as f1) has higher injection than the max pooling layer 

2 (denoted as p2) during both forward pass and 

backpropagation. For the average, fully connected layers have 

the lowest injection rate, max pooling layers have higher 

injection rates than fully connected layers but lower than 

convolutional layers. 

IV. CONCLUSION AND FUTURE WORK 

The results of the experiment demonstrate the correlation 

between some factors and performance, they also indicate some 

factor which will not impact the performance of the GPU during 

the training process.   

The results of the comparison between the perfect network 

and mesh network, concludes on-chip latency highly affects the 

performance since the data transmission is very active during 

the training process. We also indicate that L1D cache can 

impact the performance, since the IPC increase along with the 

L1D cache increase. L2D cache slightly influences the 

performance, especially the volume of computation is low, 

increase the L2D cache shows the same results as the regular 

L2D cache configuration. The network traffic intensity with 

both CNN models demonstrate that each layer of any CNN 

involves distinct computation patterns, the volume of the traffic 

varies from one layer to another. These unique patterns show 

the convolutional layer has the highest traffic intensity, and the 

fully connected layer has lowest traffic intensity. 

 
 

Figure 8. Normalized injection rate of LeNet. 
 

Figure 9. Normalized injection rage of MiniNet. 
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