
 

Abstract—High throughput in data communication is of great 
significance for GPU accelerated systems in order to fully exploit 
thread level parallelism. Different traffic patterns between GPU 
NoCs and CPU NoCs lead to suboptimal performance in GPU 
NoCs that directly adapt from CPU NoCs. Moreover, for GPU 
NoCs, two networks are usually employed to avoid deadlocks 
between requests and reply messages. Another important feature 
of GPU NoCs is the unbalanced traffic load between request 
network and reply network. This feature often causes the reply 
network to be congested while the request network is idle. Based 
on these features of GPU NoCs, this paper proposes a technique 
called Stop Request Network (SRN). SRN works by stopping 
request network to reduce energy cost when congestion occurs in 
the reply network. Our evaluation results show that SRN can save 
power by 10% with negligible performance degradation.  

I. INTRODUCTION 

Increasing core numbers in GPU accelerated computing 
systems provide opportunities to process a large number of 
threads in parallel to achieve high performance.  However, this 
also brings challenges for researchers to solve the 
accompanying cost problems. On-chip networks which serve as 
GPUs’ communication backbone affect GPUs’ performance 
and cost significantly [1], [2], [3], [6]. On the one hand, high 
throughput is need for data communication to deeply exploit 
thread level parallelism. On the other hand, network cost such 
as area and power consumption needs to be reduced in order to 
incorporate more cores. GPUs have been shown to be power 
hungry and it is imperative to develop techniques which can 
reduce power cost with minimal performance degradation.  

Topology is the way routers are connected with each other. 
Typical topologies used in NoCs include mesh, ring, 
concentrated mesh or torus. Topology plays a critical role in 
network performance and cost. Different from CPU-based 
multi-processor systems, GPUs exhibit a many-to-few-to-many 
traffic pattern which defines how data flows between many 
computing cores and a few memory controllers (MCs). Due to 
the simplicity in design, meshes are most widely used in NoCs. 
However, hot spots are often created in memory controller 
connected routers due to the many-to-few-to-many traffic 
pattern. Because the majority of messages are read messages 
and read reply messages usually have larger payload size, the 
reply network accounts for most of the network traffic load. 
When congestion occurs at the reply network hotspots (i.e. 
MCs), memory controllers cannot service request messages 
anymore because their buffers are fully occupied. As a result, 
the request messages are piled up in the network buffers, 
consuming a large amount of static energy.  

This paper proposes a technique for power savings by 
stopping the request network when we detect that the reply 
network is congested. After some time interval, the request 
network is restarted if the congestion is relieved. Our objective 
is to reduce power cost without performance degradation.  Our 
simulation results show that our technique helps to reduce 
power consumption by 10% on the average, with minimal 
negative impact on system performance. Our results 
demonstrate the effectiveness of the proposed technique in 
exploring performance and cost tradeoffs for GPGPU NoCs. 

The rest of this paper is organized as follows: Section II 
introduces background and motivation; Section III describes 
our proposed design in detail; Section IV presents our 
experimental results and related analysis and we conclude this 
paper in Section V. 

II. BACKGROUND AND MOTIVATION 

A. GPU Traffic Pattern 

Figure 1 shows a typical mesh NoC for GPGPUs. There are 
28 compute cores and 8 memory controllers. Data packets are 
transmitted between the compute cores and memory 
controllers. A memory controller and a L2 cache are co-located 
together and are connected to the network through a MC router. 
If a L1 cache miss occurs, a request message is sent to L2 cache. 
Requested data will be returned to the computing core if it is 
found in L2. Otherwise, the request will be directed to the off-
chip SDRAM to retrieve the data. There is limited 
communication between computing cores (L1 to L1) in GPUs and 
this is mostly cache coherency signals between L1 caches. Because 
the amount of this type of traffic is small, L1-to-L1 
communication in GPU is often removed and replaced by L1-
to-L2 transfer followed by L2-to-L1 transfer [5] [10]. 
Therefore, GPU network traffic usually consists of two 
categories: (1) requests received by memory controllers from 
computing cores; and (2) reply messages received by 
computing cores from memory controllers. GPU NoCs exhibit 
a many-to-few (request) and few-to-many (reply) traffic pattern 
because the number of computing cores is much larger 
compared with that of memory controllers. 

Request and reply networks in the GPU NoCs exhibit 
imbalance in their traffic loads. There are much more read 
messages than write messages. In addition, the size of read 
reply messages is much larger than that of read request 
messages. Prior studies have shown that 70% of the total on-
chip traffic are reply messages [12, 13]. Because the sources of 
reply messages are a few memory controllers, network  
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Figure 1. A typical GPU NoC with a mesh topology. 

bottlenecks are usually created in routers connected with those 
memory controllers. Our goal for improving GPU NoC design 
in this paper is to improve network power efficiency without 
performance degradation. We propose to stop transmitting 
request messages if reply messages are blocked at the memory 
controllers due to congestion. By power gating the routers in 
the request network, we can save power in request network 
when the reply network is congested and then restart the request 
network when congestion in the reply network is relieved. 

B. Limitations in Current GPU NoCs 

Crossbars are mostly employed by industry in designing 
GPU NoCs. Although crossbars provide good throughput by 
allowing no-blocking connectivity between each pair of nodes, 
they are not scalable to large networks. The cost of crossbars 
grow exponentially as the number of cores increases and this 
limits the application of crossbars to large GPU systems. Mesh 
topology has been most widely proposed for designing NoC for 
GPUs [4], [7], [9], [10], due to its regularity, scalability, and 
simplicity in layout. To avoid protocol deadlock between 
request and reply messages, almost all mesh-based NoCs need 
two physical networks except a logically positioned single 
network [4]. 

However, mesh topology exhibits inherent drawbacks with 
regard to performance and cost despite its wide application: (1) 
At MC connected routers, which is usually the network 
bottleneck, there is severe interference between 
injection/ejection packets and bypassing packets. Packet 
injection and ejection is only part of functions that MC 
connected router need to implement. These routers also need to 
route bypassing packets to their neighbors. Therefore, these 
different types of packets compete for the router resource and 
link bandwidth. As a result, congestion is generated especially 
in the reply network; (2) The position of MCs significantly 
influences network performance. That is due to the interaction 
between the many-to-few-to-many traffic pattern and DOR 
routing. Trying to find an optimal MC placement increases the 
NoC design complexity; (3) The utilization of network resource 
in a mesh network is inefficient. Mesh networks’ evenly 
distribute resources to all routers, such as routers ports and links 
to simplify the design. However uneven traffic pattern of GPUs 
causes over provisioning of resource and power. Some regions 
tend to be much more congested than the rest of the network. 

As a result, static power is wasted in regions that are not 
utilized. All these limitations demand more power efficient 
design for mesh-based GPU NoCs. 

III. DESIGN OF SRN 

A. Opportunities and Challenges 

We propose to take advantage of two inherent features of 
GPU NoCs: (1) Imbalance between request and reply network 
traffic and the reply network carries most of the traffic load. (2) 
In reply network, the traffic pattern is few-to-many, i.e., few 
memory-controllers send reply packets to many compute cores. 
Both of these features tend to cause congestions in the reply 
network, with the request network being idle. We propose a 
technique to stop the request network to save power when 
congestion is detected in the reply network. When the reply 
network congestion is relieved, we immediately restart the 
request network. This technique can minimally affect the 
network performance but improve the power efficiency.  

GPUs achieve high performance executing parallel 
applications because all cores can run threads in parallel and 
there is a large pool of runnable threads to hide communication 
delay. If the communication delay cannot overlap with 
computation, the performance will degrade due to stalled cores 
waiting for data from memory controllers. Therefore, one 
challenge is to appropriately determine stop and restart time in 
order to avoid unnecessary stall caused by our mechanism. 
Another challenge is keeping the frequency of stop and restart 
at an appropriate frequency. Stop and restart the request 
network incurs extra overhead in network control and 
synchronization. Frequent stop and restart may result in 
thrashing and have a negative effect on performance and power 
efficiency. Therefore, we need to find proper metrics to 
determine the appropriate time to stop and restart of request 
network. 

B. Design of SRN 

As has been shown by prior work [12, 13], 70% of GPU 
traffic load is reply messages. We observe that when congestion 
occurs, a large number of reply messages are blocked in MC 
output queues, waiting to be injected into the network. In case 
that a MC output queue is full, the MC will stall. Therefore, the 
performance of the whole network can be improved by 
increasing reply network throughput. On the other hand, 
blocked reply messages provide the request network some slack 
to tolerate delay. Network performance will not suffer from 
degradation in this case because no incoming request messages 
will be served since the MC already stalls. However, the request 
network needs to be promptly restarted when the congestion in the 
reply network is relieved. Otherwise, stopped request network 
will incur extra stalls in the computing cores and leads to 
performance degradation. Therefore, we need to first find 
proper metrics and mechanisms to monitor network status and 
determine the duration for stopping the request network. 

(i) Stop Metrics 

Selecting a metric to evaluate the benefit of stopping the 
request network in epochs of time is a critical part of our design. 
The desired metric needs to be able to reflect network slack. 
The slack time represents reply packets’ congestion status at 
output queues of memory controllers. We experimented with 
several metrics, such as all MCs’ maximum output queue 



occupancy and the average output queue occupancy. However, 
we found that neither of these metrics can accurately capture 
the uneven occupancy of the output queues. The maximum 
output queue occupancy reflects only one of the MCs local 
congestion status but cannot show the global congestion 
situation. It is not an accurate metric because the whole network 
may not be congested even if one of the MC is very congested. 
Similarly, the average MC output queue occupancy is not 
accurate because the whole network may not be busy even if 
multiple output queues are full. To accurately measure the network 
congestion, we choose a combination of two metrics that can avoid 
bias caused by unbalanced output occupancy. The first metric is 
individual MC’s output queue occupancy. We label one MC to be 
congested if its occupancy is greater than a threshold value Th_queue. 
The second metric is the number of congested MCs. Only when 
the total number of congested MCs is above a threshold value 
Th_MC, the reply network is considered to be congested and 
the actions are taken to stop the request network. By using two 
metrics, we can detect global congestion status of MCs instead 
of local ones which ensures the accuracy. We set up both 
thresholds Th_queue and Th_MC  using empirical values.  

(ii) Restart Metrics 

We stop the request network when slack is detected. 
However, to ensure that our mechanism does not introduce extra 
stall time in computing cores, the request network needs to be 
restarted immediately once congestion is relieved. Therefore, in 
this work, the metric of deciding the time for network restart is 
also needed. Different from the network stop metrics, we evaluate 
the input queue of MCs for network restart. We consider both the 
individual input occupancy and the occupancy of all input queues. 
Similarly, we use empirical values to set thresholds for the 
evaluation. Once it is determined that restart needs to be initiated, 
a RESTART signal is sent to cores from MCs. To avoid the 
overhead caused by thrashing that stop and restart are too 
frequently called, we use a HOLD TIME to enforce that the 
request network does not transit to a new state unless certain 
time has elapsed. 

IV.  EXPERIMENTAL RESULTS 

Our proposed SRN technique is evaluated regarding 
performance and power consumption. GPGPU-Sim [7] is used 
to simulate our proposed technique. The simulated GPGPU 
system consists of an 8x8 2D mesh connecting 56 computing 
cores and 8 MCs. Routers in the network employ conventional 
5 ports VC-based micro-architecture. 

TABEL I.  System Configuration 

Number of Computing Cores 56 cores 

Number of Memory Controllers 8 

MSHR per Core 64 

Warp Size 32 

SIMD Pipeline Width 8 

Number of Threads per  Core 1024 

Number of CTAs/Core 8 

Constant Cache Size/Core 8KB 

Texture Cache Size/Core 8KB 

L1 Cache Size/Core 16KB 

L2 Cache Size/Core 128KB 

Number of Registers/Core 16384 

Warp Scheduler Greedy-Then-Oldest 

Shared Memory 48 KB 

Memory Scheduler FR-FCFS 

Memory Model 8 MCs, 924  MHz 

NoC Channel Width 128 bit 

NoC Router Pipeline Stage 2 

Number of VC per  Port 2 

VC Buffer Depth 3 

Subnet 2 

 

A. Impact on Performance 

As shown in Figure2, the performance of all the benchmarks 
are more than 90% of the baseline system. There are several 
benchmarks, such as WP and BP, that achieve better 
performance than the baseline. This is because after we stop 
request network, the contention of reply network has reduced 
and the network throughput gets improved. As a result, the SRN 
can achieve better performance than baseline. On the average,  
SRC achieves performance that is 99% of that of the baseline. 
This means our technique has negligible performance 
degradation. We also compare our work with the state-of-the-
art GPU NoC design of Checker Board [3] and our design 
achieves 12% better performance than the Checker Board.  

 
Figure 2. Performance. 

TABLE II.  Benchmark Description 

Abbreviation Description Injection Rate 

LPS 3D Laplace Solver 2.14% 

MUM MUMer GPU 1.31% 

NN Neural Network 1.30% 

WP Weather Prediction 1.38% 

PR Parallel Reduction 1.16% 

SP Scalar Product 1.43% 

BP Back Propagation 3.55% 

BFS Breadth First Search 1.30% 

HW Heart Wall 2.16% 

PF Path Finder 1.74% 

SR Srad 1.34% 

SC Stream Cluster 2.98% 
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B. Impact on Energy 

The SRN aims to save network power by stopping the 
request network when the reply network is congested. As 
shown in Figure 3, our technique can reduce energy cost by 
about 10% averagely compared with baseline. For benchmark 
SC, the energy savings can be 35%. The result shows that the 
SRN can effectively reduce energy cost in the GPU network. 

C. Impact on Packet Latency 

We also analyzed network packet latency. As shown in 

Figure 4, the packet latency gets reduced for most of the 

benchmarks. This is because after we stop the request network, 

the congestion of the reply network gets decreased, so the 

latency gets reduced as a result. On the average, the packet 

latency gets reduced by about 9%. Benchmark PF and SC 

achieve the largest latency reduction with their packet latency 

reduced by 31% and 44% respectively. 

 
Figure 3. Energy Consumption. 

 

 
Figure 4. Packet Latency. 

D. Impact on EDP 

Finally, we evaluate the Energy Delay Product (EDP), the 
result is shown in Figure 5. On average, the EDP reduction is 
about 17%. The best result is achieved by benchmark SC which 
is about 64%. The result shows that the proposed SRN 
technique can effectively reduce the power consumption and 
packet latency. 

V. CONCLUSION 

 In this work, we propose a technique called SRN by 
stopping the request network when network slack is detected to 
save energy based on the special characteristics of GPU NoCs. 
Our evaluation results show that the technique proposed can 

effectively reduce network energy with negligible performance 
degradation. 

 

 
Figure 5. Energy Delay Product. 
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