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Abstract—Epilepsy affects 1% of the world population, which
necessitates a fast seizure detection system for practical epilepsy
solutions. The reduction of seizure detection delay is a critical
problem which needs to be addressed as rapid detection provides
effective treatment. In this paper an electroencephalogram (EEG)
based, patient-specific seizure detection system is proposed in
the Internet of Medical Things (IoMT) framework which can
detect seizures at a minimum delay. The proposed system uses
neighborhood component analysis (NCA) for channel selection,
statistical features for optimal feature extraction, and a ReliefF-
based optimization (RBO) in conjunction with a κ-nearest
neighbor classifier for feature classification. A publicly available
database (CHB-MIT EEG) has been used for evaluation of the
proposed algorithm. The simulation results show that the pro-
posed algorithm provides a sensitivity of 100% while maintaining
a low average latency of 1.49 sec, which may be useful for
practical epilepsy treatment and biomedical applications.

Index Terms—Internet of Medical Things (IoMT), Smart
Healthcare, Seizure Detection, Seizure Early Detection, Elec-
troencephalogram (EEG), Epilepsy

I. INTRODUCTION

In this paper, a real time seizure detection is proposed in

the IoMT framework. EEG Signals are initially analyzed using

neighborhood component analysis (NCA) and optimal chan-

nels are determined. The EEG signals of selected channels are

then partitioned continuously by a moving window. Features

are then extracted from each segment which form a feature

vector, and finally feature vectors are trained and classified

using an optimized κ-nearest neighbor (κ-NN) classifier. The

IoMT framework enables recording of a patient’s day to

day activities and allows access to healthcare data anywhere,

anytime [1]. The proposed system is conceptualized in Fig. 1.

This paper clarifies the basic terms of seizure detection in

section II. Section III discusses novel contributions. Section

IV describes related prior research. The seizure detection

algorithm is discussed in section V. The architecture of the

proposed system is illustrated in Section VI. Section VII

discusses the implementation and experimental results. Section

VIII concludes the paper with suggestions for further research.
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Fig. 1: Module of the proposed system.

II. SEIZURE - DETECTION, EARLY DETECTION,

REAL-TIME DETECTION, AND PREDICTION

The term “Seizure Detection” generally refers to the de-

tection of a seizure occurrence using biological signals ob-

tained from the epileptic subjects. Seizure detection algorithms

analyze the input signals and classify the segmented signals

into seizure or non-seizure states. In early detection input

signals or data points are continuously analyzed and a seizure

state is detected at a minimum delay. Seizure prediction

is the forecasting of an impending seizure and is different

from seizure detection. Fig. 2 conceptualizes and clarifies

the definition of seizure detection, early detection, and early

prediction. A denotes the typical detection delay associated

with existing algorithms, which is approximately 6 sec or

more, whereas B is the delay for early detection, which is

expected to be 1∼2 sec. C is the time before the seizure onset,

which indicates seizure prediction.

III. NOVEL CONTRIBUTIONS OF THIS PAPER

In this paper, a real time seizure detection system which

monitors EEG signals continuously and detects seizure quickly

is proposed. The proposed algorithm removes unnecessary

and less significant channels and features, which eliminates

redundant computations and reduces the latency of the system.

The extracted feature values are highly effective in capturing
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Fig. 2: Time domain characterization of an epileptic seizure.

complex EEG dynamics, which helps in distinguishing seizure

and non-seizure behavior. The IoMT framework provides re-

mote connectivity with other healthcare devices. Experimental

results show that proposed system reduces detection latency

considerably while maintaining high sensitivity, which makes

it a suitable candidate for practical epilepsy treatment.

IV. RELATED PREVIOUS RESEARCH

A scalp EEG dataset is analyzed for epileptic seizure using

a wavelet transform based algorithm in [2], with a reported

sensitivity and latency of 76% and 10 sec, respectively. A

seizure detection algorithm [3] is introduced in the edge-

IoMT framework which uses a Naive Bayes classifier for

classification of the query point. A support vector machine

(SVM) based seizure classification method is presented in

[4], which is extensively validated with scalp EEG dataset

and results in a sensitivity and mean detection latency of

96% and 4.6 sec, respectively. The signal rejection algorithm

(SRA) based algorithm in [5] eliminates unwanted signal and

noise which in turn improves the classification accuracy and

provides a sensitivity and latency of 96.9% and 3.6 sec,

respectively. A deep neural network (DNN) based detection

technique is explored in the short duration icEEG dataset.

The extracted Hjorth parameters from the icEEG dataset

capture the seizure and non-seizure activities effectively and

improve the detection performance considerably [6]. An non-

invasive approach alternative to EEG was proposed recently

[7] for the detection of convulsive seizure using a wrist-

worn accelerometer device. A temporal synchronization based

seizure detection method has been proposed in [8] where a

complex model represents the recurrence pattern of normal

EEG and ictal EEG and results in a latency of 6 sec. In

the local mean decomposition (LMD) based approach [9], the

EEG signal is decomposed to several product functions (PF)

and features are extracted.

V. THE PROPOSED NOVEL ALGORITHM FOR SEIZURE

RAPID DETECTION

EEG signals are preprocessed through a band pass filter

and are then passed to the neighborhood component analysis

(NCA) module for channel selection. The extracted features

from the selected channels are then submitted to the optimized

κ-NNalgorithm for seizure classification. The flowchart of the

proposed system is shown in Fig. 3.
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Fig. 3: Flowchart of the proposed algorithm.

A. Channel selection using neighborhood component analysis

If all EEG channels are considered for feature extraction,

the computation time as well as latency will be high. It would

be useful to select an optimal number of channels which could

provide high detection accuracy and low latency. Consider a

training set T of n observations which include both seizure

and non-seizure instances:

T = (Bi, bi) i = 1, 2, . . . , N, (1)

where Bi is the feature vector and bi is the corresponding

class label. The weighted distance between two observations

(Bi, Bj) is [10]:

Dw(Bi, Bj) =

d∑
q=1

wq
2|Biq −Bjq|, (2)

where wq denotes the weight of the q-th channel. In the train-

ing set, the leave one out classification accuracy is maximized.

The probabilistic distribution function is used for choosing

the reference point. The probability of Bj being chosen as a

reference point for Bi is [10]:

Pij =

{
k(Dw(Bi,Bj))∑

k �=i k(Dw(Bi,Bj))
, if i �= j

0, if i = j
(3)

The probability of the correct classification of Bi is:

pi =
∑
j

bijpij (4)

The approximate leave one out classification accuracy is [10]:

ε(w) =
1

N

∑
i

pi =
1

N

∑
j

∑
j

bijpij (5)



A regularization term λ is introduced for mitigating the

problem of over-fitting and channel selection, which leads to

the following error function:

ε(w) =
∑
j

∑
j

bijpij − λ

d∑
q=1

wq
2 (6)

The best value of λ leads to minimum classification loss.

B. Feature extraction using statistical parameters

Statistical features such as variance, signal mobility, and

signal complexity are useful for describing complex biomed-

ical signal. Variance refers to the variations of the sample

points from the mean. Complexity and mobility refer to

the 1st and 2nd order variations along a signal. Frequency

information of the signal is contained in these parameters and

as a result, non-stationary EEG signals are better characterized

and distinguished using these features [6], [11].

1) Variance: It is calculated by:

V AREEG−seg =
1

L− 1

L∑
k=1

|xk − μEEG−seg|2, (7)

where xk is the kth sample of the epoch, μEEG−seg is

the mean of the epoch or segment and L is the length of

the segment.

2) Mobility: The 1st order variations can be represented by:

MOBEEG−seg =

√
V AREEG−seg(x′(t))
V AREEG−seg(x(t))

(8)

where x(t) is the raw EEG signal.

3) Complexity: The 2nd order variations along a EEG seg-

ment are [6]:

COMEEG−seg =
MOBEEG−seg(x

′(t))
MOBEEG−seg(x(t))

(9)

C. ReliefF-based optimization (RBO) for κ Nearest Neighbor
(κ-NN) algorithm for feature classification

The RelifF algorithm (RBA) [12], [13] calculates the score

for each feature iteratively. The features with top scores are ap-

plied to the classifier for feature classification. The elimination

of irrelevant features reduces computational burden of classi-

fiers. Consider a set of features or predictors F1, F2, . . . , Fn
with predictor weights FW1, FW2, . . . , FWn. Initially all

weights are set to zero. The algorithm selects a random

instance zu and finds κ nearest instances and all the weights

are updated for each nearest neighbor zv . If zu and zv are

within the same class, the weight of the feature Fj at the ith
iteration are computed by [13], [14]:

FWj
i = FWj

i−1 − Δj(zu, zv)

qEEG
∗ duv. (10)

If zu and zv are from different classes this becomes:

FWj
i = FWj

i−1 − pyv

1− pyu

Δ(zu, zv)

mEEG
∗ duv, (11)

where duv is the distance function. pyv
and pyu

denote the

prior probability of the class to which zu and zv belong,

respectively. mEEG indicates the update for iterations. The

difference in feature values for two instances zu and zv is

given by [14]:

Δ(zu, zv) =
|zuj − zvj |

max(Fj)−min(Fj)
(12)

The κ-NNalgorithm consists of two phases: a training phase

and a classification phase. The updated feature vectors from

the RBO and class labels of the training samples are stored

in the training phase. In the classification phase, a query

point to be tested is submitted to the classifier, the algorithm

determines the κ nearest neighbors and a class is assigned to

the query point by voting among the neighbors. To achieve

high classification accuracy, only two parameters need to be

tuned: the κ value and the distance metric. The selection of

the κ value for the computation of nearest distance is a critical

task. The effect of noise can be reduced by using a larger

value of κ but a larger κ also weakens the boundary between

different classes. The performance of the classifier depends on

distance metric and the value of κ. If G = (g1, g2, g3, . . . , gn)
and H = (h1, h2, h3, . . . , hn) are two points in the feature

vector space, their Euclidean distance is [15] :

dEEG−feature(g, h) =

√√√√ n∑
i=1

(gi − hi)2, (13)

VI. THE PROPOSED RAPID SEIZURE DETECTION SYSTEM

The architecture of the proposed real time system is shown

in Fig. 4. EEG signals are passed through a band pass filter,

which eliminates unwanted noise and retains only useful

signals. The filtered signal is applied to NCA for channel

selection. The EEG signals of desired channels are divided

to a 6 sec moving window. The moving window is further

subdivided into three 2 sec segments. Signal complexity, signal

mobility and variance are extracted from each segment and

then the window is moved by 1 sec. The feature vector is

formed by repeating the process [16]. The classifier is trained

using training feature vectors of specified length, as discussed

above. In the classification phase, the moving window is

continuously given to the system which forms the feature

vector for the specified window, which is then given to κ-

NNclassifier for the detection of seizure.

A. Preprocessing and Channel Selection Unit

EEG signals are applied to a low pass filter with cutoff

frequency of 32 Hz. Scalp electrodes are placed in different

areas of the scalp. The EEG data acquisition system generally

includes more than 20 channels. The analysis and computation

from all the channels is cost and time expensive. The channel

selection unit analyzes all the channels based on NCA and

keeps only the useful channels.
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Fig. 4: Architecture of the proposed system.

B. Moving Window Formation Unit

The moving window formation unit is the crucial part of

the real time seizure detection and consists of three non-

overlapping 2 sec EEG segments. The current window will be

overlapping by 5 sec with the next window (Fig. 5). The length

of the moving window and non-overlapping segment play a

pivotal role for characterizing seizure progression and main-

taining detection delay. The non-overlapping 2 sec segment

contains 512 samples, which are sufficient for characterizing

the signals and for further analysis.

2 sec 2 sec 2 sec

2 sec 2 sec 2 sec

1 sec 1 sec

Fig. 5: 6 sec moving window and 5 sec overlap.

C. Feature Extraction Unit

Each non-overlapping segment is submitted to the feature

extraction unit and variance, signal mobility, and complexity

are extracted. These parameters measure the level of varia-

tions along a signal and these parameters are very useful in

characterizing non-stationary EEG dynamics.

D. Concatenation and Feature Vector Formation Unit

Extracted features from non-overlapping segments are con-

catenated and form the feature vector. During offline training,

features are concatenated to form a training feature vector. Its

length is dependent on training time. The training time is a

crucial factor for controlling detection accuracy and latency.

In the online classification phase, features are concatenated

to form testing feature vectors continuously from the moving

window and applied to the machine learning classifier for

further analysis.

E. Optimized κ-Nearest Neighbor Classifier

The classification of query points based on distance is sim-

ple but highly effective [15]. The ReliefF-based optimization

(RBO) discards irrelevant features and reduces the size of the

training and testing feature vectors. In the offline training,

the training feature vector is given to the κ-NNclassifier and

the classifier is trained. In the real time classification phase,

the system continuously forms testing feature vectors from

the moving window and passes them to the classifier. The

classifier analyzes the feature vectors and determines the κ
nearest neighbors and finally, a class is assigned to the testing

vector by voting among the neighbors.

VII. IMPLEMENTATION AND VALIDATION OF THE

PROPOSED SYSTEM

EEG data were taken from the CHB-MIT scalp EEG

database [17], [4] with sampling frequency of 256 Hz. 6

epileptic subjects (chb01, chb02, chb03, chb05, chb08, and

chb11) were considered. EEG signals were given to a 32 Hz

low pass filter. The filtered signals were submitted to NCA for

channel selection. The dataset was analyzed and significant

channels were selected. The regularization parameter λ for

NCA was computed from 10-fold cross validation. As an

example, for epileptic subject 1 (chb01) in each fold, average

loss value was calculated and the minimum loss corresponds

to the best λ = 0.000264. The ictal or interictal patterns are

not identical for different subjects, hence, the best λ value may

vary according to epileptic subjects. The significant channels

were selected according to channel weights. The weights

of the following significant channels were greater than the

threshold value: F7-T7 (2), P7-O1 (4), FP1-F3 (5), FP2-F8

(13), F8-T8 (14), FZ-CZ (17), T7-FT9 (20), FT9-FT10 (21).

8 significant channels were retained and the other 15 channels

were removed. Fig. 6 show the variation of channel weight

with channel index.

The moving window consists of 1536 points and was

subdivided into P=3 non-overlapping epochs of 512 points (2

sec each). The Q=3 features signal complexity (SC), signal

mobility (SM), and variance were extracted from each P
segments which were then concatenated. For N=8 channels,

the obtained feature vector contains N ×P ×Q =72 elements

for the 6 sec moving window. RBO ranked the elements from 1

to 72 and 1-30 ranked elements from different positions of the

timing window were used to form the updated feature vector.

The κ-NNclassifier was trained with 2-4 hours of inter-ictal

data and 0.5-2 hours of normal EEG, whereas for a patient

with s seizures, s− 1 number of ictal EEG was used for the
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training. For the proposed patient specific seizure detection,

NCA selected the channels in the training phase which helped

to reduce detection delay in the testing or classification phase.

Seizure is denoted as ’1’ and non-seizure (inter-ictal or nor-

mal) EEG is denoted as ’0’. In the training phase, data was

continuously taken as a 6 sec overlapping window and formed

the training feature vectors. In the real time classification

phase, the window was continuously analyzed whether it is

seizure or not. κ=2 was used for the κ-NNclassifier. The

system was implemented using MATLAB® and ThingSpeak.

Fig. 7 shows the variation of feature values with time. It

is clear from the extracted features that the feature value

drops during inter-ictal activities. The performance of the

proposed algorithm is evaluated by sensitivity and latency. The

sensitivity is defined as follows [5]:

Sensitivity =
True Positive

True Positive + False Negative
(14)
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Seizure detection delay is the difference between the actual

seizure onset point marked by an expert and the seizure de-

tection point determined by the seizure detection system. The

proposed approach was validated with 6 epileptic subjects of

30 seizures. All the seizures were correctly detected providing

a sensitivity of 100%. Fig. 8 shows the average latency of

each patient and the average latency for 6 subjects is 1.49

sec. The highest average latency of 2.6 sec was found for

epileptic subject 5 (chb08) whereas subject 3 (chb03) reported

the lowest average latency of 0.53 sec.
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The characterization of the proposed system is shown in Ta-

ble I. Without ReliefF based optimization (RBO), the proposed

system reported an average latency of 1.6 sec, since irrelevant

features increase the computational burden. Table II shows the

performance comparison with existing algorithms. The short

duration nature of the Bonn dataset would not provide proper

evaluation of the latency, hence, it was not considered for

latency comparison. Simulation results reported a sensitivity

and latency of 100% and 1.49 sec, respectively, which is a

considerable improvement compared to existing algorithms.

TABLE I: Characterization of the proposed system

Parameter Value

Sampling frequency 256 Hz
Low cut-off frequency 0 Hz
High cut-off frequency 32 Hz
Best λ (NCA) 0.000264 (varies)
κ value (κ-NN) 2
Distance metric (κ-NN) Euclidean
Sensitivity 100%
Latency 1.49 sec

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We propose a real time system for seizure detection in

the IoMT framework using feature extraction, NCA, and

RBO with a κ-NNclassifier. The proposed IoMT-based seizure

detection system was implemented using MATLAB® and

ThingSpeak. The experimental results evaluated using the

CHB-MIT database show that the statistical feature values for

seizure and non-seizure EEG are different, providing a high

sensitivity of 100 %. NCA eliminates low weighted channels,

RBO discards irrelevant features and reduces computation

time, rendering an average detection latency of 1.49 sec, which

is considerably less compared to existing algorithms. The

proposed system can be useful for low latency implantable

or wearable applications.



TABLE II: Performance comparison with existing works

Reference Dataset Methods Sensitivity (%) Latency (sec)

Saab, et al. [2] Private database from Montreal
neurological institute and hospital

Feature extraction, Five level Wavelet decom-
position, Bayesian formulation

78 9.8 (median)

Shoeb, et al. [4] CHB-MIT scalp EEG database Temporal and spectral features, Support Vector
Machines (SVMs)

96 4.6 (mean)

Kusmakar, et al. [7] CHB-MIT scalp EEG database Spatial Temporal synchronization using com-
plex network model

98 6

Fan, et al. [8] Freiburg (Bonn) Database Loacl mean decomposition (LMD), k-NN,
LDA, SVM, GA-SVM

98.1 NA

Vidyaratne, et al. [16] CHB-MIT scalp EEG database Fractal dimension (FD), harmonic wavelet
packet transform (HWPT), Relevance Vector
Machine

96 1.89

Sayeed, et al. [6] Bonn Database DWT based deep neural network (DNN) 98.65 NA

Sayeed, et al. [5] CHB-MIT scalp EEG database Signal amplification and signal rejection algo-
rithm (SRA)

96.9 3.6

Proposed System CHB-MIT scalp EEG database NCA, Feature extraction, and ReliefF based
optimization (RBO), and κ-NNclassifier

100 1.49

Future research includes validation of the proposed system

with large scale databases, including both scalp EEG and in-

tracranial EEG (icEEG). We will also explore integrating with

drug-delivery systems for fast seizure control [18]. Security

consideration as the overall system in IoMT enabled is an

important research direction [19], [20].
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