
Alleviating Bottlenecks for DNN Execution on
GPUs via Opportunistic Computing

Xianwei Cheng∗, Hui Zhao∗, Mahmut Kandemir†, Saraju Mohanty∗ and Beilei Jiang∗
∗Department of Computer Science and Engineering, University of North Texas
†Department of Computer Science and Engineering, Pennsylvania State University

Email: xianweicheng@my.unt.edu, hui.zhao@unt.edu, kandemir@cse.psu.edu,
saraju.mohanty@unt.edu, beileijiang@my.unt.edu

Abstract—Edge computing and IoT applications are severely
constrained by limited hardware resource. This makes memory-
consuming DNN (Deep Neural Network) frameworks not ap-
plicable to edge computing. Simple algorithms such as direct
convolution are finding their way in embedded machine learning.
As one of the most widely used platforms for DNN acceleration,
GPUs face the bottleneck of on-chip bandwidth. This work intro-
duces a GPU DNN execution architecture that can relieve the on-
chip bandwidth bottleneck by reducing data movement through
opportunistic computing. We first investigate data access patterns
in the hardware’s view. Then we propose two opportunistic
computing techniques to predictably perform computation when
data is available with the help of assistant warps. By moving
computation to data, our techniques are able to significantly
reduce data movement and relieve the DNN execution bottleneck.
Our evaluation results show that the proposed technique can
improve DNN application performance as much as 55%.

I. INTRODUCTION

In recent years, deep learning techniques have seen great suc-
cess in many application domains, such as speech processing,
computer vision, and natural language processing. Researchers
have recently been investigating the role of accelerators as
a solution, including GPUs, ASICs and FPGAs. ASICs and
FPGAs usually have better performance and power efficiency
than GPUs. However, they employ specialized design tailored
for a specific type of DNN and need to modify software stack
which restricts their application realms. On the contrary, GPUs
are easier to program and require no specialized modification
to the programming models. Therefore, GPUs are widely used
commodity accelerators in the DNN execution and become the
most widely used platform for DNN training [1].

It has been shown that a critical performance bottleneck in
executing DNN applications on GPUs is the on-chip band-
width [2]. In order to reduce data movement, prior research
has proposed several techniques such as pruning and data
reuse. However, these optimization techniques either work at
the application level or are from the view of the software
programmers but ignore the underlying hardware architecture.
For example, some pruning techniques are based on the
software-defined filters without considering how the filters are
organized and stored in hardware memory [2]. Therefore, such
schemes cannot lead to optimal performance improvement
because the real hardware bottleneck is not addressed, which
is caused by the mismatch between the algorithm and the
underlying hardware architecture.

Recently, edge computing/IoT becomes a new research
frontier, which is greatly enabled by moving machine learning
to the network edge. Machine learning on the edge usually
executes on embedded systems which are severely constrained
by limited computing resource and memory space. Therefore,
machine learning algorithms that require a large amount of
memory (e.g. im2col in cuDNN) are not suitable for embedded
systems [3]. Instead, simple algorithms such as direct convo-
lution find their way in embedded machine learning and can
achieve high performance if carefully designed [3]–[6].

In this work, we investigate techniques for embedded ma-
chine learning by reducing DNN on-chip data movement
through data reuse at the architectural level. Instead of using
the software-defined format of a basic compute unit (e.g., a fil-
ter), we investigate the data reuse with respect to cache blocks
which is the actual unit of data movement in hardware. A GPU
consists of several computing Streaming Multiprocessors (SMs
or shader cores). In a single SM, we found that computation
between data located in a pair of L1 cache blocks usually
follows some regular access patterns. It is highly possible
that a data cache block is revisited many times because the
filters it holds are involved in multiple computations. We also
observed that a large amount of duplicated data exists among
L1 caches in different SMs, so the data missing from one SM
can be found in other SMs with high probability. Moreover,
computation results for a DNN layer are not likely to be reused
until the accumulation operation at the end of the current layer
and this results in low data dependency.

This motivated us to design an opportunistic computing
mechanism, which takes advantage of data locality both within
and across SMs to reduce data movement. Our scheme lever-
ages near data computing by performing predicted computa-
tion when and where the data is available. The key idea is that
there are repeated accesses to the same pair of cache blocks,
separated in time and we can execute future computations
using currently available data. To the best of our knowledge,
we are the first to propose such opportunistic computing
architectures for DNN execution on GPUs. The execution here
includes both training and inference. Our contribution is as
follows: (1) Intra-SM Opportunistic Near Data Computing to
predicatively execute computations when the data is available
within an SM’s L1 cache. (2) Inter-SM Opportunistic Near
Data Computing which performs near data computing where



Fig. 1. Distribution of the number of computations between two cache blocks
(LeNet5).

Fig. 2. Data availability when a GPU SM stalls due to load misses (LeNet5).

the data is available. (3) Leverage of assistant warps to
facilitate opportunistic computing.

II. MOTIVATION

Computing convolution layers in DNNs usually employs three
methods: direct convolution [8], [9], unrolling-based convolu-
tion [10]–[12], and FFT(Fast Fourier Transformation)-based
convolution [13], [14]. Direct convolution is the traditional
way to compute convolution. A small window slides within an
input feature map and a dot production is performed between
the filter bank and local patch of the input feature map.
Cuda-convnet2 [8] and Theano-legacy [9] are representative
implementations of direct convolution. Unrolling-based convo-
lution is a more efficient method by reshaping and duplicating
the input and the filter bank to double large matrices using
algorithms such as im2col. Then the final convolution is
converted into a matrix-matrix production (GEMM). Typical
implementations include Caffe [10], Torch-cunn [11], Theano-
CorrMM [14], and cuDNN [12]. The FFT-based convolution
first converts inputs and filter banks from the spatial domain
to the Fourier domain, then those transformed matrices are
multiplied in the Fourier domain and finally inverses back to
the spatial domain [13], [14].

While unrolling and FFT based convolutions achieve good
performance, in order to utilize the matrix-matrix multiplica-
tion routine, they require a large amount of memory space to
store intermediate data [3]–[5]. As such, these methods are
not suitable for the environment with limited resources, such
as edge computing. Edge computing moves DNN execution
to the resource-constrained devices in network edges such as
embedded systems and mobile systems. Such systems cannot
support GEMM or FFT computation even though they achieve
better performance. Direct convolution, on the contrary, is
well suitable for edge computing and embedded machine
learning, due to its low memory requirement. However, new
techniques need to be developed to enhance the performance
of direct convolution. There have been several software-based
techniques proposed [3]–[6] but few hardware solutions have
been provided.

When GPUs allocate memory for input and weight data,

they are allocated to different memory chunks. As a result,
two pieces of data involved in a computation are from separate
cache blocks. In this work, we call them a computing cache
block pair. Ideally, if we can finish all computations when a
computing cache block pair are both available in an SM’s L1
cache, we can avoid stalls caused by load misses. However, in
reality, it is not possible to schedule all computations between
one computing cache block pair to one SM consecutively due
to the high data parallelism in GPUs. The second reason is
we need to balance the workload among SMs. Even if we
know a computing cache block pair needs to perform a lot
of computations, we still need to split the computations into
different warps/threads and assign them to different SMs for
better parallelism.

We characterized the frequency of computations between
all computing cache block pairs in a real CNN application
(LeNet5 [1]), as shown in Figure 1. It can be observed that,
for the first convolution layer (C1) in the forward propagation,
about 57% of all the computing cache block pairs have more
than 800 total computations between their data. About 96%
of the computing cache block pairs have computations more
than 100 times for this layer. Similarly, we can observe a
large amount of computation among computing cache block
pairs for most of the layers except C3, F1 and F2. This
means there are a lot of repeated accesses to many computing
cache block pairs. We also characterize the possibility of the
missing data to be found in other SMs in Figure 2. As can
be observed, missing data can be found in other SMs with a
probability as high as 86% for some layers and the average
probability of the whole application is 78%. To take advantage
of data locality, we propose opportunistic near data computing
techniques detailed in the next section.

III. PROPOSED DESIGN

A. Intra-SM Opportunistic Near Data Computing

In this scheme, we propose to predict future computations
based on patterns observed in data access history. Then we
perform the computation when both the data blocks are
available in the L1 cache of an SM. When the predicted
computation is really scheduled to the SM, we can just use
the predicted results directly without incurring SM stalls and
data movement. We call this technique intra-SM opportunistic
near data computing because it only takes advantage of intra-
SM data locality and performs predicted computation when
the data is available.

Figure 3 illustrates how our intra-SM scheme works using
an example. To simplify the case, we only show input data
stored in the cache. Because input data is allocated as a big
chunk of memory, each cache block can only hold part of the
data from one row of the input data and an input row takes up
multiple cache blocks. In this example, we assume each cache
block can hold 32 words and an input row has 256 words. Due
to the GPU memory allocation policy, a 3x3 input window
needs to access data from three cache blocks. As shown in 1 ,
the 3x3 input window on the left needs to access data from
cache blocks with address (0x00000, 0x01000, 0x02000). We



Fig. 3. An example of intra-SM opportunistic computing. The left side of each step shows the software view of data in the computation: input and weight
windows; the middle shows data organization in the L1 cache; the right side shows convolution computation implemented in the step.

assume in 1 that all three needed cache blocks are already
fetched into the L1, so all three cache accesses are hits and the
result can be calculated without stall. Then the input sliding
window moves to the right by one stride in 2 . Since the data is
already fetched by the last step, again all three cache accesses
are hits. Then the procedure continues as the sliding window
keeps moving to the right until reaching the end of the input
row and this is not shown in the figure. Then in 3 , the input
sliding window shifts down one row and restarts from the left
end. Although the new input window has its first two vectors
overlapping with 1 , because the cache blocks are already
replaced during earlier steps with new data (the red square
in the cache), all three accesses result in misses. As a result,
this warp has to stall to load data. In our scheme, we execute
the action illustrated in 4 right after step 1 as opportunistic
computing. Because we predict that the two bottom vectors
(in green color) will be used in future computations, we
predictably execute the calculation and save the results in the
Precompute Table. Then in 5 which corresponds to baseline
3 , we only need to wait for one missing data to finish the

whole convolution by using the predicted results. It needs to be
noted that, in this example, we slide the windows horizontally.
If the windows slide vertically, we still have a similar scenario
of revisiting a cache block after the window makes a turn.

We added hardware to manage the intra-SM opportunistic
computing, called Precompute Table. We use this table to save
predicted computations and their results. When an instruction

is decoded, we extract the cache block address information
of both operands. Then we use the address pair to search
the valid entries of the Precompute Table. If the pair of
addresses is found and the completion bit is set, we know
that this computation has been finished and we can use the
result directly. If we cannot find the address pair, we know
the computation is not precomputed and continue with normal
execution. If we found the address entry but the complete bit
is 0, this means the computation is predicted but did not finish
the computation yet, so we invalidate the entry and continue
with normal execution. When this SM stalls because no warp
can proceed, we start executing the assistant warps created
with information in the Precompute Table.

When the assistant warp finishes the computation, it will
save the results into the Precompute Table. If at this time
the normal warps are ready to execute, the control will jump
back to normal warps. Otherwise, another assistant warp will
be created to perform a new predicted execution. Because an
SM stall often involves data movement from the L2 cache, it
usually takes dozens of cycles. The assistant warp only takes
a few cycles to perform the computation. Therefore, multiple
assistant warps can be executed during one SM stall.

Our prediction method is based on the observation that
the order of computations among input/weight maps exhibit
regular patterns. As shown in the example in Figure 3, the
sliding windows have several overlaps in data when sliding
horizontally and vertically. Sliding horizontally can take good



Fig. 4. Inter-SM Opportunistic near data predicted computing.

advantage of data locality in cache blocks. Our technique
aims to utilize data locality when a sliding window moves
down to a new row. This can be achieved by performing
precomputation before we have all data in a sliding window
available, as illustrated in Figure 3. In other words, we propose
to use part of the data in the current input window to perform
partial convolution with vectors in the weight window. An
important step is to know what vectors will perform future
convolution and this is not hard to predict, due to the regular
movement of the windows. Algorithm 1 shows the details of
our prediction logic. Based on the window size and current
input and weight vector address, we generate vector addresses
for predicted computation. This is achieved by moving the
input vector down and find all possible future computations
with weight vectors until we reach the bottom of the window.
Still using Figure 3 as an example, at the step 1, we can make
three predicted computations: by moving the window down
by one row, we get [3,0,1] x [-1,0,1] and [2,4,2] x [2,-2,0];
by moving the window down by two rows, we get [2,4,2] x
[-1,0,1].
Algorithm 1: Algorithm for predicting partial convo-
lution.

Input: N=window length; S I=input vector addr;
S W=weight vector addr;

Output: address pairs for vector production
input delta=1
weight offset=0
for i=1 to N-1 do

for input offset=input delta to N-1 do
// select input vector row

Addr I vector= (S I + input offset x
cache block size) mod cache block size
// select weight vector row

Addr W=S W + weight offset x
weight vector size

save {Addr I, Addr W} to Precompute Table
weight offset ++

end
// input vector move down one row

input delta ++
end

B. Inter-SM Opportunistic Near Data Computing
Intra-SM opportunistic computing takes advantage of per SM
data locality and performs future computations when data is
available. If the prediction is not successful, an SM still needs
to fetch the data from the L2 cache. Since each SM still keeps

a copy of the data and is ignorant of other SMs’ data locality,
there still exists a lot of duplicate data in SMs and leads to
redundant data movement. If we can share the data among the
SMs, then we can not only reduce data movement but also
improve each SM’s L1 cache effective capacity. This motivates
us to propose a second technique called inter-SM opportunistic
near data computing. We organize all the SMs into several
clusters (similar to the AMD’s GPU cluster) and we move
computation to an SM that has the data located in its L1 cache
within each cluster.

Figure 4 shows our cluster-based inter-SM opportunistic
near data computing architecture. Inside each cluster, we build
a lookup table to manage the mapping of a computation to
an SM called Computation Assignment Table (Assign Table).
Each entry of this table is indexed by the address of a
computing cache block pair. The content of each entry is an id
of an SM inside the cluster. For example, an entry indexed by
(A, B) with a value of 3 means that currently SM 3 has both
cache blocks and computation from other SMs can be moved
to SM 3 for near data computing. When an SM performs
computation and encounters a stall due to data misses, that
SM first checks if the table has an existing entry indexed by
the two cache blocks involved in the computation. If there is
no such an entry, then the SM loads the missing cache block
from the L2 cache and creates a new entry in the Assign Table.
We update the table with changes in cache block replacements.
If a cache block is replaced from an SM’s L1, then we search
the table and remove all entries related with this cache block
address. To reduce area overhead and search latency, we limit
the table size to be 512 entries.

For each SM, we perform not only assigned computations
but also predict future computations. This is similar to the
intra-SM scheme and the only difference is this time the
computation is not from a thread scheduled to this SM but
is instead moved from another SM. The SM that assigns its
computation to another SM does not need to read the result
back. Instead, it sends the output address to the assigned SM
to finish the write back to memory directly. This is due to
the characteristics of the MAC operations in DNNs where
the computation result of multiplication will only be used by
an accumulator which is implemented as an atom addition
operation at a memory location.

Next, we describe the overall workflow of the inter-SM
scheme which is shown in Figure 4. Two SMs 0 and 1 are
in the same cluster. SM 1 needs to perform computation
between two cache blocks A and B and encounters a cache
miss. Then SM 1 searches the Assign Table and finds that
SM 0 has both cache blocks. Then SM 1 sends its input and
output addresses to SM 0. SM 0 searches its computation
results in the Precompute Table to see if this computation
has been performed predictably. If not, a new entry will be
added to the Precompute Table so the next assistant warp
will perform the computation. At the same time, SM 0 will
skip this load stall and continue with its other operations. The
inter-SM scheme can improve performance in three ways: (1)
we perform predicted computation during normal SM stall



similar to the intra-SM scheme; (2) we can greatly reduce
data movement and schedule computation to where the data is
located; and (3) duplicated data is reduced among L1 caches
inside a cluster which will improve cache’s effective capacity.

C. Design of Assistant Warps
Our proposed schemes perform Near Data Computing by gen-
erating special warps which we call assistant warps to execute
predicted computations during an SM’s stall time. It has been
shown that in GPUs, there is under-utilization of computing
resources such as registers and on-chip shared memory. For
example, there are many registers that are left unallocated to
any thread block because the number of available registers is
not a multiple of the number required by a thread block. Such
unused resources can be used by us to create assistant warps in
order to alleviate the bottlenecks in GPU execution. To reduce
overhead, we only allocate resource to one assistant warp every
time. Each time we create only one assistant warp and it will
not encounter a stall because all its data is available. As a
result, each assistant warp only takes a few cycles to finish.
Since an SM stall usually takes tens of cycles (e.g. waiting
for data from the L2 cache), we can execute multiple assistant
warps consecutively during this stall time.

The assistant warp is a pure hardware solution because its
function is just to finish the predicted and assigned computa-
tion. There is no programmer or compiler involvement in the
creation and execution of the assistant warps. Every assistant
warp is a set of instructions issued into the SM pipelines.
Just like regular instructions, assistant warp instructions are
executed in lock-step across all the SIMT lanes. Our assistant
warps own a separate context that is allocated in each SM
(e.g., registers, local memory) but does not reduce the number
of threads that can be scheduled on a single SM. Ideally, an
assistant warp consumes resources and issue cycles that would
otherwise be idle.

IV. EVALUATION

We use GPGPU-Sim 3.2.2 [15] to simulate the proposed
opportunistic near data computing architecture. Our baseline
is a GeForce GTX 480 GPU using an 8x8 2D mesh to
connect 56 SMs and 8 MCs. Table 1 shows the configuration
used in our evaluation. For inter-SM scheme, we divide the
SMs into 8 clusters. We implemented the CNN applications
using direct convolution in a similar approach as in [16]. The
applications used in this work are LeNet5 and AlexNet [7].
We are able to run LeNet5 to the completion because the
scale of this neural network is relatively small. However, we
were not able to finish the whole application of AlexNet on
GPGPU-Sim due to the prohibitively long simulation time.
Instead, we selectively run the first 4 convolution layers of
AlexNet because convolution layers are the most computation-
intensive layers and they most significantly affect the overall
performance. Even though our evaluation is not based on the
complete execution of AlexNet, our results can still reflect the
overall trend because the first a few convolution layers of this
application have the most computation-intensive kernels.

To evaluate the tradeoff between resource overhead and

TABLE I
SYSTEM CONFIGURATION.

SM 56 SMs, 1.4GHz, SIMT width=8
Warp Scheduler Greedy-Then-Oldest
Shared Memory 48 KB
Cache 2KB L1 I-Cache (4 sets/4 ways LRU), 16KB L1 D-

Cache (32 sets/4 ways LRU), 64KB L2 Cache per MC
(8 way LRU)

Memory Model 8 MCs, 924 MHz
NoC 128-bit channel width, 2-stage pipeline, 16-byte flits,

1-cycle link latency, X-Y routing, vc buffer depth=4

performance, we experimented with two configurations in our
schemes: intraSM C1 and interSM C1 are low cost designs
with 256 entries in the Precompute table and 512 entries in the
Assign Table. The table sizes are doubled to 512 and 1024 in
intraSM C2 and interSM C2 respectively. The performance
evaluation of our proposed schemes is shown in Figure 5 and
Figure 6. As can be observed, our Intra-SM Opportunistic
Near Data Computing contributes to 8.0% (intraSM C1) and
12.6% (intraSM C2) performance improvement and 9.0% (in-
traSM C1) and 13.0% (intraSM C2) execution time reduction
on average. Forward propagation C2 layer in LeNet has the
highest performance gain and execution time reduce for both
intraSM C1 (14.2% and 13.4%) and intraSM C2 (17.5% and
16.2%). In AlexNet, it is the forward propagation C3 layer that
improves performance and reduces execution time the most
with intraSM C1 (21.1% and 18.2%) and intraSM C2 (44.7%
and 32%). Inter-SM Opportunistic Near Data Computing im-
proves performance by 6.5% and reduces execution time by
6.7% for both interSM C1 and interSM C2 on average.

Using the low-cost configuration (C1), there is 15.0%
performance gain and 14.2% execution time reduction on
the average. When more resource is allocated in the C2
configuration, 20.2% performance improvement and 18.0%
execution time reduction can be achieved. The most significant
performance gain is from the forward C1 layer in LeNet
which is around 55%. It is worth noting that, although there
is no significant improvement for some unaffected layers,
our techniques do greatly reduce the execution time of most
convolution layers. When we evaluate the overall performance
with all layers included, LeNet achieves a performance gain
of 40.0% and AlexNet improves by 43.1%. There is a rel-
atively high variation in the performance gains achieved in
different layers of LeNet. Layer C1 and C2 achieve the most
significant performance improvement in both forward and
backward propagation. This is because these two layers are
more compute intensive than other layers and our technique
can therefore bring more performance benefit by relieving
the communication bottleneck. The first four compute layers
(C1 to C4) in the forward propagation of AlexNet that we
evaluated are all compute intensive. Thus, we see significant
performance gains in all these layers as shown in Figure 5 and
Figure 6.

We also evaluate the SM stall time in each technique and
the result is shown in Figure 7. Compared with baseline, the
intraSM C1 can reduce stall time by 11% and intraSM C2 can



Fig. 5. Normalized Performance(IPC).

Fig. 6. Normalized Execution Time.

Fig. 7. Normalized Stall Time.

Fig. 8. Normalized Energy Consumption.

Fig. 9. Prediction Accuracy.

Fig. 10. Computation distribution.

further reduce it by 15%. When the table sizes are doubled,
the stall time reduction is more significant: 20% for LeNet
and 26% for AlexNet. The Inter-SM schemes can reduce the
stall time to 93.6% (interSM C1) and 95.4% (interSM C2)

of the baseline averagely. When both intraSM and interSM
techniques are combined, the average stall time can be re-
duced by 13% and 20% on the average across all workloads.
We evaluate the energy consumption when employing our
techniques and the results are shown in Figure 8. As can be
observed, the inter-SM scheme brings nearly no extra power
overhead. This is because the energy overhead incurred by
our techniques is offset by the energy saved through reduced
NoC data movement and memory accesses. Energy consumed
in Intra-SM scheme increases around 6% which is mostly
caused by the static power of table buffers and mispredicted
computations.

We also evaluated our prediction accuracy in Figure 9. As
can be observed, the accuracy improves significantly when
we increase the Precompute table size in intraSM C2, from
26.2% to 43.3%. We can also observe that combined with
the inter-SM scheme, a small degradation occurs. This is
because the inter-SM scheme moves computation to other SMs
which makes the prediction less accurate. Figure 10 shows
the distribution for normal, predicted (intra-SM opportunistic
computing) and assigned computations (inter-SM opportunis-
tic computing). We can observe that the predicted and assigned
computations occupy around 50% of total computations for



forward C2, backward C2 and C1 layer, with more than 50%
for the forward C1 layer.

Finally, we evaluate the overhead of our techniques. The
proposed precompute table has 256 entries, with 64 index
bits, 1 valid bit, 1 complete bit and a result of 32 bits. The
overall size of a precompute table is around 3.1 KB per SM.
For the Assign Table, there are 512 entries in each cluster of
7 SMs. For each entry, there are 50 block address bits, and
3 bits of assigned SM ID. Therefore, each Assign Table is
512 * (50 + 3) = 3.4 KB per cluster. Each assistant warp
needs 3*4*32=384B registers and we added 5.036KB in total
per SM, compared to the overall storage of a baseline SM
(118KB), our overhead is 4.27%.

V. RELATED WORK

Several prior work has been proposed to explore new hard-
ware designs in order to satisfy DNN’s demand for immense
computations with complicated goals. Imani et al. explored the
using of a resisted nearest content addressable memory blocks
(NNCAM) for frequently accessing operations storing [17]. Du
et al. employed inexact computing theory into neural network
architectures for its sizable tolerance with errors [18]. Kim et
al. proposed a kernel decomposition method used for binary
weight neural networks for operation reduction [19]. Zheng
et al. proposed a kernel transformation diagram for operation
reduction that fits for both binary and ternary weight neural
networks [20]. Our proposed technique is orthogonal to these
work because we are providing architectural level solutions
and our technique can be combined with their work.

Pruning has been proposed to reduce computation amount
but it leads to inefficient hardware execution because it
introduces holes in memory. This will also reduce the ef-
fectiveness of our work. Techniques have been proposed to
reorganize the data in memory to remove holes [2] and our
scheme can be combined with such techniques. Pattnaik et
al. proposed opportunistic computing [21] as a Near Data
Computing solution for GPU architectures with the objective
of minimizing on-chip data transfer between the computing
cores and Last-Level Cache (LLC). Their work targets on
frequently occurring Load-Compute-Store instruction chains
in general GPU applications. In contrast, our proposed work
perform opportunistic computing between a pair of cache
blocks for DNN applications.

VI. CONCLUSION

In this work, we propose techniques for DNN execution in
edge computing/IoT where memory consuming algorithms are
not applicable. Our techniques can reduce data movement by
taking advantage of opportunistic computing for both Intra-SM
and Inter-SMs. The evaluation results show that the proposed
techniques are able to relieve the execution bottleneck and can
effectively improve system performance.

ACKNOWLEDGEMENT

This work is supported by NSF grant CNS-1828105.
REFERENCES

[1] Y. LeCun et al., “Gradient-Based Learning Applied to Document Recog-
nition,“ PROC. OF THE IEEE, 1998.

[2] P. Hill and et al., “DeftNN: Addressing Bottlenecks for DNN Execution
on GPUs via Synapse Vector Elimination and Near-compute Data
Fission,“ MICRO, 2017.

[3] J. Zhang et al., ”High Performance Zero-Memory Overhead Direct
Convolutions”, International Conference on Machine Learning, 2018.

[4] A. Gural et al., ”Memory-Optimal Direct Convolutions for Maximiz-
ing Classification Accuracy in Embedded Applications”, International
Conference on Machine Learning, 2019.

[5] P. Maji and R. Mullins, ”1D-FALCON: Accelerating Deep Convolu-
tional Neural Network Inference by Co-optimization of Models and
Underlying Arithmetic Implementation”, ICANN, 2017.

[6] C. Alippi et al., ”Moving convolutional neural networks to embedded
systems: the alexnet and VGG-16 case”, IPSN, 2018.

[7] Alex Krizhevsky et al., “ImageNet Classification with Deep Convolu-
tional Neural Networks,“ Advances in Neural Information Processing
Systems 25, 2012.

[8] A. Krizhevsky, ”One weird trick for parallelizing convolutional neural
networks”, CoRR, abs/1404.5997, 2014.

[9] http://deeplearning.net/software/theano/index.html
[10] Y. Jia et al., ”Caffe: Convolutional architecture for fast feature embed-

ding”, arXiv preprint arXiv:1408.5093, 2014.
[11] R. Collobert et al., ”Torch: A matlab-like environment for machine

learning”, In BigLearn, NIPS Workshop, 2011.
[12] C. Sharan, et al. ”cudnn: Efficient primitives for deep learning”, arXiv

preprint arXiv:1410.0759, 2014.
[13] N. Vasilache et al., ”FAST CONVOLUTIONAL NETS WITH fbfft : A

GPU PERFORMANCE EVALUATION”, arXiv: 1412.7580. 2015.
[14] J. Bergstra et al., ”Theano: a cpu and gpu math expression compiler”,

In SciPy, volume 4, page 3, 2010.
[15] A. Bakhoda et al., “Analyzing CUDA workloads using a detailed GPU

simulator,“ IEEE International Symposium on Performance Analysis of
Systems and Software, 2009.

[16] W. Choi et al., ”On-Chip Communication Network for Efficient Training
of Deep Convolutional Networks on Heterogeneous Manycore Systems”,
IEEE Trans. Computers 67(5): 672-686 (2018).

[17] M. Imani et al., “Efficient neural network acceleration on GPGPU using
content addressable memory,“ DATE, 2017.

[18] Z. Du et al., “Leveraging the error resilience of machine-learning
applications for designing highly energy efficient accelerators,“ ASP-
DAC, 2014.

[19] H. Kim et al., “A Kernel Decomposition Architecture for Binary-weight
Convolutional Neural Networks,“ DAC, 2017.

[20] S. Zheng et al., “An Efficient Kernel Transformation Architecture for
Binary- and Ternary-weight Neural Network Inference,“ DAC, 2018.

[21] A. Pattnaik et al., “Opportunistic Computing in GPU Architectures,“
ISCA, 2019.


