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Abstract—Heterogeneous multi-core systems integrate general-
purpose CPUs and data-parallel GPUs on a single chip. However,
the integration between CPUs and GPUs causes severely interfer-
ence both on CPU request and GPU request. Because CPUs and
GPUs have diverse sensitivity to network performance regarding
latency and throughput, there exists severe interference between
their data communication when they share the same Network-
on-Chip (NoC).

In this paper, we propose an interference-free NoC architecture
to meet this demand. Specifically, our proposed scheme reduces
the network interference effectively through MCs partition,
specially designed routing algorithm, and bypass scheme for
interference mitigation in heterogeneous systems. By evaluating
different CPU and GPU applications, we found that our proposed
NoC architecture is able to improve the overall network perfor-
mance as well as the overall system performance. Simulation
results show that the proposed scheme can reduce over 17%
of energy consumption on the average compared with baseline
heterogeneous multi-core architecture. Also, the average perfor-
mance of CPU can be improved as much as 30% and GPU
average performance can be increased over 9%, compared to
the baseline 6x6 mesh network.

Index Terms—Heterogeneous multicores, Network-on-Chip
(NoC), conflict-free NoC

I. INTRODUCTION

Heterogeneous multi-core systems have been applied to var-
ious computing platforms such as high-performance servers,
personal computers, handheld devices and gaming consoles.
Representative products include AMD’s Fusion APUs [13],
Intel’s Sandy Bridge [9] and ARM’s MALI [4] that integrate
general purpose programmable GPUs together with CPUs on
a same die. Such state-of-art designs enable faster communi-
cation by allowing CPUs and GPUs to share the same memory
and some designs even provide a unified virtual address space
and programming model for both CPU and GPU applications.

To be more specific, sharing memory between CPUs and
GPUs of these integrated heterogeneous architectures exhibits
several advantages. Firstly, such designs can improve the
performance by reducing communication overhead because
no explicit data transfer is needed between CPUs and GPUs.
Secondly, the fused multi-core architectures can reduce energy
and resource costs due to better resource utilization. Thirdly,
programming models for such systems become simpler be-
cause no explicit GPU memory management is needed. The
reduced communication costs and increased bandwidth have

the potential to enable new optimizations that were previously
hard to achieve. As a result, this design paradigm enables new
opportunities that can be exploited to enhance performance
and reduce system cost.

In heterogeneous multicores, the interference between CPU
and GPU traffic can lead to severe performance degradation
[6], [20], [21]. This is because CPUs and GPUs exhibit
very different traffic patterns: CPU cores generate moderate
coherence traffic and is very sensitive to latency, while GPUs
generate a large amount of streaming traffic and require high
network throughput to satisfy the demand from their data-
parallel processing. Without careful design, these two types
of traffic will contend for the shared network resource such as
buffers, switches and link bandwidth. Therefore, it is critical
for NoC designs need to efficiently manage the resource
sharing between CPUs and GPUs in order to achieve optimal
performance.

An intuitive approach to resolve the traffic interference is
to enforce isolation through multiple networks. CPUs and
GPUs can inject their traffic into separate networks and this
will totally remove interference. However, this technique has
two disadvantages: firstly, static partitioning of the network
resource may fail to satisfy dynamic demand from various ap-
plications; secondly, multiple networks significantly increase
the cost of NoCs. Under the stringent budget of area and
energy in a heterogeneous system, optimal solutions need to
be developed in order to avoid interference while maintaining
low cost. Although NoC designs have matured in CPU-based
and GPU-based multi-cores [5], [11], [14], the design of
interference-free NoCs for heterogeneous systems is largely
unexplored. Only a handful of works have examined the
impact of NoC design in heterogeneous systems [1], [19],
[20]. These work focus on improving network performance but
ignored the cost which is a most important constraining factor
of the heterogeneous system design. Thus, it is of primary
importance to develop NoC designs with both interference
avoidance and cost-efficiency.

In this work, we observe that the interference between
CPU/GPU traffic can be avoided by properly designed routing
algorithms, obviating the need of physically partitioned net-
works. We propose a CPU and GPU traffic interference free
NoCs scheme that using one shared physical network.

Our proposed technique avoids interference in three ways:
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(a) Heterogeneous CPU-GPU architecture.
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(b) 2D mesh layout.
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(c) NoC Router Micro Architecture.

Fig. 1. Heterogeneous multi-core and NoC architecture.

• We isolate CPU and GPU conflicts through partitioned
memory controllers (MCs) in terms of CPUs and GPUs
do not share a same resource in the same MC.

• We use XY-YX routing to separate the CPU and GPU
flow both on request and reply traffic

• We employ repeater to each router where do not need to
route the CPU or GPU traffic.

II. BACKGROUND AND MOTIVATION

Figure 1(a) illustrates the high level view of our baseline
heterogeneous CPU-GPU multi-core architecture. Throughput
oriented GPU cores and latency oriented CPU cores are
connected with shared LLC and memory controllers (MC) by
a NoC. In order to increase the system scalability, the CPU and
GPU cores are organized in a tiled structure similar to prior
work [12], [21]. Figure 1(b) shows the layout of our baseline
architecture connected with a 6× 6 mesh network. The CPU
and GPU cores, LLC and MCs are attached to the routers of
the NoC.

In this layout, there are 14 CPUs, 28 GPUs and 8 memory
slices in total. We organize CPU and GPU cores into 7
processing tiles with each tile consisting of 4 GPU cores
and 2 CPU cores. The reason why we choose a 2:1 ratio for
GPUs to CPUs is because a single GPU core (i.e. streaming
multiprocessor or SM) in Fermi GF110 (45nm technology)
occupies roughly half the area of an Intel Nehalem CPU core
(45nm technology). Figure 1(c) depicts the microarchitecture
of a generic NoC router used in our baseline mesh network.
Each router has five ports with one port connecting with one
of the four direct neighbors and one port connecting with local
Processing Element (PE). In this case, the PE can be a CPU
core, a pair of GPU cores and a memory slice (containing a
LLC and a MC). We use virtual channels to organize input
buffers of each router for better flow control. Each input port
has four virtual channels (VCs). The arriving flits are first
stored in a VC before going through the router pipeline stages.

Figure 2 shows the performance of CPU applications be-
tween running alone and running together with a GPU appli-
cation MUM. Performance degradation can be observed for all
CPU applications, with an average of 41%. Many of the CPU
applications can only achieve half of their stand-alone IPC. We
also characterize the GPU performance degradation incurred
from CPU interference as shown in Figure 3. In this case, we
fix the multiprogrammed CPU applications and run a different
GPU application each time. On the average, GPU suffers 14%
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Fig. 2. The performance of CPU applications running with and without GPU
applications.
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Fig. 3. The performance of difference GPU applications running with and
without CPU applications.

degradation and the performance degradation for most of the
GPU applications is around 10%. Applications such as MM,
PVC and PVR receive the most significant performance loss
due to CPU interference.

Our characterization shows that there exists severe inter-
ference between CPUs and GPUs in the shared network and
mitigation schemes must be developed in order to reduce
performance degradation. An intuitive solution is to enforce
network isolation using separate networks. Multiple physical
networks have been proposed for separating throughput sensi-
tive and latency sensitive CPU applications [2] and for energy
reduction [15]. However, such techniques incur significant
hardware overhead. Considering the overhead of NoCs already
accounts for 30% of the overall chip cost [17], simply splitting
the interfering traffic into separate networks is not a cost effi-
cient solution. In addition, separate physical networks may not
achieve optimal resource utilization since resource from one
network during its idle or low active period cannot be utilized
by another network. This motivated us to develop the NoC
architecture proposed in this work to enhance performance
for both CPUs and GPUs through interference mitigation.
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(a) XY Request
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(b) XY Reply
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(c) X-Y Request
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(d) Y-X Reply

Fig. 4. Network traffic for XY routing and XY-YX routing.

III. INTERFERENCE-FREE NOC ARCHITECTURES

In this section, we will describe the details about the
proposed NoC architectures for interference mitigation NoCs
in heterogeneous multi-core systems.

Compared with the baseline mesh NoC architecture, the
proposed NoC architecture can effectively reduce the traffic
interference. We first observe the interference of shared MCs
between CPU and GPU traffic in order to find an efficient
scheme to reduce communication conflicts from a core to a
memory slice. Then, we employ private MCs between CPU
and GPU with specific MCs placement to avoid CPUs and
GPUs’ traffic interference. According the specific placement
of MCs, we develop a routing algorithm specially tailored
to avoid traffic interference. The advantage of the proposed
routing algorithm is that it separates traffic in all routers into
different dimensions so that no contention between CPUs and
GPUs will occur in these routers. The routing algorithm can
also reduce more than 40% links compared with the baseline
mesh. Then we propose to employ repeater to bypass CPU
flits from the router which is connected to GPU and bypass
the GPU flits from the router which is connected to CPU core.

Our proposed interference-free NoC architecture uses a 6x6
mesh topology with 8 MCs: 4 MCs are used for CPUs and
4 MCs are used for GPUs. In order to keep the tile-based
architecture, we keep the same MCs placement compared with
baseline architecture. But, the difference of MCs placement
compared with baseline architecture is that we place the left
side 4 MCs as the CPUs’ shared MC and the right side 4
MCs as the GPUs’ shared MC. With our MCs’ placement
scheme, we remove interference from the link between CPUs
and GPUs.

GPU and CPU applications have different requirements
from the networks: GPUs are bandwidth-sensitive and CPUs

are latency-sensitive. It is difficult to satisfy both CPU’s and
GPU’s requirements inside a same router. A routing algorithm
is a critical design factor affecting the performance of a NoC
and directly determines the amount of traffic each link will
carry. To find a routing algorithm that can mitigate interference
between CPUs and GPUs, we first analyzed the impact of
different dimension routing algorithms as shown in Figure 4.
In this paper, we propose to use XY-YX routing algorithm
to separate CPU and GPU traffic for internal routers. Figure
4(a) shows the request (core-to-MC) traffic pattern under XY
routing with shared MCs. Figure 4(b) shows the reply (MC-
to-core) traffic pattern under XY routing with shared MCs.

Algorithm 1 XY-YX Routing Algorithm
// fsta is flit of each packet, sta is the status of each flit,
sta = 0 means the GPU request flits, sta = 1 means the
GPU reply flits, sta = 2 means the CPU request flits, sta =
3 means the CPU reply flits.
// C is current node of fsta, D is destination node of fsta.
if sta = 0 or sta = 2 then

if C and D in different column then
Choose straight route to East or West;

else
//C and D in same column
Choose straight route to North or South;

end if
else if sta = 1 or sta = 3 then

if C and D in different row then
Choose straight route to North or South;

else
//C and D in same row
Choose straight route to East or West;

end if
end if

As can be observed from Figure 4, the reply network has
much heavier traffic loads than the request network using XY
routing. In our proposed scheme, we apply XY-YX routing
algorithm to cluster-based NoC architecture. We employ XY
routing for CPU request and GPU reply traffics, and YX
routing for CPU reply and GPU request traffics. The details of
the proposed XY-YX routing algorithm is shown in Algorithm
1. Under our routing algorithm, CPU and GPU traffic will
not interfere with each other in the same dimension. This is
because CPU and GPU packets will not go through a same
dimension in these routers. Network resources such as vc
buffers, crossbar switches, output ports and links will not be
shared by both CPU and GPU packets and thus no interference
will occur. The traffic loads of XY-YX routing algorithm for
NoC-based heterogeneous multi-core system is depicted in
Figure 4(c) and Figure 4(d). In Figure 4(c) and Figure 4(d),
the green arrow and red arrow represent CPU and GPU traffic
respectively. Compared with baseline XY routing algorithm,
applying XY-YX routing algorithm to our NoC architecture
can not only reduce the interference between CPUs and GPUs
but also can reduce the utilization of links. On the other



Crossbar

5x5

RC

VC

SA

VC1

VC2

VC3

VC4

VC1

VC2

VC3

VC4

   

 
 
 

Credit

Credit

Input 1

Input 5

   

Output 1

Output 5

Credit

Input Output

Repeater

 

Fig. 5. Our proposed router architecture incorporated with repeater.

hand, network congestion is also reduced compared with
conventional XY routing algorithms. Therefore, the proposed
routing algorithm will result in improved network performance
since the interference is removed.

Deadlock Avoidance: In the baseline NoC, XY routing
algorithm can avoid deadlocks by avoiding turns (Y-to-X) [8].
However, our proposed scheme employs X-to-Y and Y-to-
X to operate in the same network. We need to ensure that
deadlock will not occur in the proposed design. According
to Figure 4(c) and Figure 4(d), the CPU and GPU request
packets first traverse along the x dimension and then along
the y dimension, the CPU and GPU reply packets traverse in
the opposite way. Different from CPUs, GPUs request packets
traverse along the x dimension first and then along the y
dimension, and the CPUs, GPUs reply packets go through an
opposite way. On the other hand, the request and reply network
is physical isolation. This means that the request traffic and
reply traffic use different networks to reach their destination.
Protocol deadlock will be activated if we only use on one
physical network to transfer request and reply packets.

Through the prior description about XY-YX routing algo-
rithm, the interference between CPU and GPU can be removed
for heterogeneous multi-core systems. Furthermore, the verti-
cal links are not used for the non-edge routers according to
Figure 4(c) and Figure 4(d). Also, we can remove the link
between the routers of CPU and GPU based on our NoC
architecture. So, we apply non-buffer repeater to our NoC
architecture.

As show in Figure 5, we add non-buffer repeater to our
router architecture which connects the CPU and CPU cores
or GPU and GPU cores directly. This technology can directly
connect two routers which are not closed. That means the
router of CPU cores connect without the router of GPU
cores, and vice versa. So, the CPU performance will acquire
lots of benefits due to the latency reduction. For example,
if a GPU core places between in two CPU cores, the non-
buffer repeater of this GPU router can bypass CPU flits
directly rather than traversing the router again. For a large

scale NoC architecture of heterogeneous multi-core systems,
this will provide a graceful performance degradation. On the
other hand, applying the non-buffer repeater to our NoC
architecture not only improves the CPU performance but also
reduces the energy consumption. Because both the CPU and
GPU flits decrease a multitude of unnecessary hops for a
network communication. Therefor, it can reduce the energy
consumption for routing and switching.

IV. EVALUATION METHODOLOGY

In this section, we will demonstrate our experimental setup
and the benchmarks for evaluation.

System Setup. To evaluate our proposed schemes, we
integrate GPGPU-Sim v3.x [3] with an in-house cycle-level
x86 CMP simulator. Each simulation warms up with 500K
instructions before executing GPU and CPU instructions. To
measure CPU performance, we run until the slowest CPU core
reaches 5 million instructions. To measure GPU performance,
we run the applications until completion or 100 mullion
instructions, whichever comes first.

Table I shows the configuration details of GPU and CPU
cores. The baseline NoC architecture uses 28 GPU cores and
14 CPU cores. Each GPU core contains 32-wide SIMD lanes
and is equipped with an instruction cache, private L1 data
cache, constant, and texture caches. Each CPU core is a 3-
way issue x86 core with private write-back L1 instruction/data
cache and a L2 cache.

TABLE I
BASELINE HETEROGENEOUS CPU-GPU ARCHITECTURE CONFIGURATION

GPU core config. 28 shader cores, 1400MHz,
SIMT Width = 16 × 2

GPU resources/core Max. 48 warps/core, 32 threads/warp,
7 48KB Shared Memory, 32684 Registers

GPU caches/core 16KB 4-way L1 data cache, 12KB 24-way
texture cache, 8KB 2way constant cache,
2KB 4-way I-cache, 128B line size

CPU core 16 x86 cores, 2000 MHz, 128-entry instruction
window, OoO fetch and execution

CPU L1 cache 32KB 4-way, 2 cycle lookup, 128B line size
CPU L2 cache 256KB 8-way, 8 cycle lookup, 128B line size
Share SRAM LLC 1 × 8 MB, 128B line, 16-way
Interconnect 6 × 6 shared 2D mesh, 14000MHz,

XY-YX routing, 2 GPU cores per node,
1 CPU core per node, 32B Channel Width,
4VCs, Buffers/VC = 4

Memory Model 8 Shared GDDR5 MCs, 800 MHz, FR-RCFS,
8 DRAM-banks/MC

Workloads and Applications. We select several GPU
and CPU applications to evaluate our proposed scheme. Our
simulation uses 16 GPU applications from ISPASS2009 [3],
Mars [10], Parboil [16], Rodinia [7]. For CPUs, we run multi-
programmed workloads with a mix of applications from dif-
ferent application suites including scientific, commercial, and
desktop applications drawn from the SPEC CPU 2000/2006
INT and FP suites and commercial server workloads. Fur-
thermore, we conduct workload analysis and select 14 CPU
benchmarks that represent a wide range of MPKI values (Miss-



per-kilo-instructions). The selected CPU benchmarks are listed
in Table II.

TABLE II
CPU APPLICATIONS

CPU app. category Applications L2 MPKI range
Low povray, namd dealII, gobmk [0.2, 2.3]
Medium sjas, astar, sjbb, ocean, [4.8, 22]

libquantum, lbm
high milc, soplex, omnetpp, mcf [25, 112.4]

Performance Metrics. To measure GPU performance,
we use GPU speedup (SUGPU ), which is the ratio of its
instruction-per-cycle (IPC) when it runs along with CPU to
its IPC when it runs alone. We use weighted speedup to
capture CPU performance (WSCPU ). WSCPU is defined as∑n

i=1(IPCi,multiprogram/IPCi,alone
), where n is the number

of CPU applications in the workload. All average speedup
results in this paper use harmonic mean. Based on user
preferences, one might want to change the importance given
to CPU or GPU when calculating speedup.

Energy Metrics. To evaluate the energy consumption of
our proposed scheme, we measure the maximum electrical and
optical power consumption. For the electrical components, we
use Booksim [18] to evaluate power consumption according
to the chip area, NoC size, VC numbers and etc. All power
parameters of electrical components are extracted from the
configure file provided by Booksim.

V. RESULTS AND ANALYSIS

In this section, we analyze and evaluate our proposed
interference-free NoC architecture with several schemes. The
baseline is a mesh network without traffic partition. To com-
pare with our interference-free schemes, we also evaluate
Physical Network Partition which equally divides request
and reply network between CPU and GPU applications for
physical partitioning the network. We also experimented with
a scheme of private MCs between CPU and GPU based on
baseline. Interference-free NoC is our proposed interference
mitigation scheme employing private MCs, routing and flits
bypass technology.

A. System Performance

We first evaluate and analyze the impact of interference
mitigation of proposed techniques on system performance.
Figure 6(a) and Figure 6(b) depict the results of CPU and
GPU performance, which are normalized to the baseline
network performance. As shown in 6(a), the first bar shows
the performance of the baseline network and the second bar is
the performance of physical MCs partition between CPU and
GPU applications. We also explore the influence of system
performance for physical network partitioned and the results
are shown as bar 3. The fourth bar is the performance of
the our proposed interference-free technique which combines
XY-YX routing algorithm and bypass technology together.
As can be observed in Figure 6(a), the average CPU IPC
of our interference-free scheme increases performance more

than 30% compared with the baseline. This is because the
our interference-free scheme can avoid GPUs to take away
resources from CPUs when GPU traffic load is high both in
the link and MCs. However, it cannot allow CPUs to utilize
idle resource when GPU is not sending a lot of traffic as
did in the baseline round-robin allocation techniques. So the
static equal partition cannot improve performance because the
resource is not optimally allocated to the users who really need
it. The results also show that the overall CPU performance is
also significantly improved when the NoC architecture uses
physical partitioned network. This is because the CPUs and
GPUs request or reply traffic is totally interference free in
terms of then use their request or reply network separately.
But this will lead to a significant energy consumption due
to the doubling of the physical network channels. For our
interference-free technique, we can observe that the CPU
IPC is enhanced by over 250%. Some applications achieve
significant improvement such as 14 CPU applications co-
run with lbm, mri-gridding and PVC. This due to two main
reasons: 1) the interference-free scheme not only removes
interference between the CPUs and GPUs in traffic channels
but also reduces the traffic congestion by separate MCs to
private MC between CPU and GPU so that the traffic load
both in the wired network and MC is greatly reduced; 2) the
bypass technique can reduce the hops on a long range with
low latency so that the overall network latency is significantly
reduced.

As can be observed in Figure 6(b), the GPU performance
improved by 9% on average with our interference-free scheme.
lbm suffers from the most significant performance degradation
among all applications. This is because this application has
very intensive traffic and our schemes effectively constrained
the resource taken by the GPUs so that the CPU perfor-
mance will not degrade significantly. As can be observed,
the interference-free techniques achieve more or less per-
formance improvement among all schemes compared with
physical network partitioning method. It can also be observed
in Figure 6(a) and Figure 6(b), interference-free scheme helps
to improve performance in several applications. Because our
interference-free scheme not only reduces the latency of CPU
packets but also mitigates the traffic congestion for GPU
packets.

B. Energy Consumption

In our design, we utilize repeater in the router which is
connected to CPUs and GPUs core to connect the CPUs or
GPUs separately.

Figure 7 shows the overall energy consumption of our
proposed techniques. Our schemes can reduce the average
energy consumption around 17% than the baseline NoC archi-
tecture. As can be observed, the average power consumption
of physical partitioned network is increased by 55% compared
with baseline architecture due to the doubling of the physical
channels. For our proposed NoC architecture, the optical links
can reduce a lot of power consumption, and our schemes
can also reduce over 40% buffers and links for the baseline
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(a) The overall CPU performance with different interference mitigation
scheme.
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Fig. 6. The overall system performance.
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Fig. 7. The overall energy consumption.

mesh network. Compared with other GPU applications, the
energy consumption of our proposed NoC architecture is the
lowest one than other techniques. This is because proposed
NoC schemes not only removes the vertical links by routing
algorithm of non-edge routers but also reduces the power
consumption of router by bypass technique.

VI. CONCLUSION

In this paper, we explore, design and evaluate an
interference-free NoC architecture for heterogeneous multicore
systems. We propose techniques to reduce the network inter-
ference effectively through MCs partition, specially designed
routing algorithm, and bypass scheme for interference mitiga-
tion in heterogeneous systems.

By evaluating different CPU and GPU applications, we
found that our proposed NoC architecture is able to improve
the overall network performance as well as the overall system
performance. Our evaluation results show that the average
performance of CPU can be improved as much as 30%
and GPU average performance can be increased as much as
9%, compared to the baseline 6x6 mesh network. With a
specially tailored routing algorithm, our scheme can reduce
over 40% links and router buffers for cost reduction. Moreover,
we employ optical links in our NoC architecture to enable
further energy savings. Our results show that the proposed
scheme can reduce over 17% of energy consumption on
the average compared with baseline heterogeneous multi-core
architecture.
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