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Abstract—To accelerate the execution of Machine Learning
applications, recent GPUs use Tensor cores to speed up the
general matrix multiplication (GEMM), which is the heart of
deep learning. The Streaming Processors in such GPUs also
contain CUDA cores to implement general computations. While
the Tensor cores can significantly improve the performance of
GEMM, the CUDA cores remain idle when Tensor cores are
running. This leads to inefficient resource utilization. In this
work, we propose to offload part of the GEMM operations from
Tensor cores to CUDA cores to fully utilize GPU resources.
We investigated the performance bottleneck in such offloading
schemes and proposed architectural optimization to maximize the
GPU throughput. Our technique is purely hardware-based and
does not require a new compiler or other software support. Our
evaluation results show that the proposed scheme can improve
performance by 19% at the maximum.

Index Terms—Accelerator, GPU, Machine Learning, Tensor
core, GEMM, throughput, parallel scheduling

I. INTRODUCTION

In recent years, GPUs have become one of the most widely
used accelerators for deep learning, especially following
NVIDIA’s introduction of Tensor cores in the Volta GPU
architecture [1], [16], [22] in 2017. Today, multiple NVIDIA’s
GPU architectures support Tensor cores, including Volta [1],
Turing [3], and Ampere [4]. By trading off some precision,
Tensor cores can achieve an order of magnitude of speed-up
for general matrix multiplication (GEMM) operations. This
leads to a significant acceleration in the overall performance
of neural network applications.

A GPU consists of multiple Streaming Multiprocessors
(SMs) that run CUDA kernels. For instance, there are 80
SMs in V100 and 108 SMs in A100 NVIDIA’s GPUs. Each
SM contains thousands of registers, several caches, warp
schedulers, and execution cores. CUDA cores exist in all SMs
and each CUDA core contains functional units to perform
general integer and floating-point operations. Using the V100
GPU as an example, each SM is partitioned into four sub-
cores with each sub-core having a single warp scheduler
and dispatch unit. Each SM sub-core has its dedicated L0
instruction cache and a branch unit (BRU). In every clock
cycle, a sub-core can process one warp instruction and feeds
into the shared MIO unit which contains the Texture Cache,
L1 Data Cache, and Shared Memory.

The CUDA programming model provides an abstraction of
the GPU architecture, acting as a bridge between an applica-

TABLE I
GPU SYSTEM CONFIGURATION

GPU Type Volta TitanV Turing RTX2060
Number of SMs 80 30
Number of CUDA
cores

64 per SM (64 FP32, 64
INT32, 32 FP64), 5120 to-
tal

64 per SM (64 FP32, 64
INT32, 32 FP64), 1920 to-
tal

Number of Tensor
cores

8 per SM (work in pair of
2), 640 total

8 per SM (work in pair of
2), 240 total

tion and its implementation on hardware. In a GPU, thousands
of threads can run in parallel, and a function executed by
different threads at the same time is called a kernel. A kernel
launches an array of thread blocks and each thread block
is a set of concurrently executing threads that reside in the
same SM. Once a thread block is assigned to an SM, it will
be further divided into a set of warps. Each group of 32
consecutive threads constitutes a warp which is the primary
execution unit in an SM. Each SM contains warp schedulers
that are responsible for scheduling the warps to the computing
cores.

Designed specifically for deep learning, Tensor cores are
recently introduced to NVIDIA’s GPUs to accelerate Machine
Learning/AI applications. Tensor cores enable mixed-precision
matrix multiplication and can greatly improve the performance
for neural network training and inference. For instance, a Tesla
V100 GPU has 640 Tensor cores in total, with 8 Tensor cores
in each of its 80 SMs. Such a single Tensor core can perform
64 half-precision fused-multiply–add (FMA) operations per
clock cycle. In total, the 8 Tensor cores in one V100 SM can
perform 512 FMAs per clock cycle. Table I shows the numbers
of different computing units (cores) in the Volta TitanV and
the Turing RTX2060 GPUs.

Current approaches in enhancing Tensor core’s performance
include: 1 faster next generations of Tensor cores, such as
the second and third generations in Turing [3] and Ampere
architectures [4]; 2 multiple modes of operation precision
such as F64, TF32, F16, INT8, and INT4 modes to allow for a
flexible tradeoff between precision and speed; and 3 optimiza-
tion in supporting sparse tensors [15], [17], [24]. However,
these techniques focused on Tensor cores only. In the current
NVIDIA CUDA execution model, one SM can only execute
one kernel at a time. If this is a GEMM kernel for a Machine
Learning application, the computation will be only allocated to
Tensor cores. It has been demonstrated by Zhao et al. [25] that
CUDA cores are mostly idle when Tensor cores are running,



Fig. 1. Volta SM Sub-core Architecture [20].
*Turing uses a similar architecture with different numbers of functional units.

except for occasional light computation such as addressing.
This leads to low utilization of the hardware resources in
CUDA cores while also incurring power overheads since idling
CUDA cores still consume energy.

To solve this problem, some researchers proposed a tech-
nique to exploit intra-SM parallelism by running other HPC
kernels on CUDA cores while Tensor cores are executing
GEMM kernels [25]. However, this technique has several
limitations: firstly, compiler support is needed to modify
the programming model; secondly, separate HPC applications
running on CUDA cores need to be available to share the
same SM. Therefore, it does not work if there is only a
single machine learning application running on the GPU;
thirdly, co-running GEMM and HPC kernels contend for
shared SM resources, such as shared memory, which can cause
performance degradation in both types of applications.

In this work, we propose to improve the intra-SM resource
utilization by offloading part of GEMM kernels’ workload
from the Tensor cores to the CUDA cores. Our technique
can increase CUDA cores’ utilization and reduce the GEMM
kernel execution time, effectively increasing the GPU’s overall
throughput. This technique is a hardware-based method and
is transparent to the programmers. No compiler support or
ISA modification is needed. This technique can also avoid
the resource contention issue since only one kernel is running
in one SM. We designed the micro-architecture to support
the offloading, investigated bottlenecks in the offloading and
performed experiments to evaluate its effectiveness.

II. ARCHITECTURES FOR PARALLEL EXECUTION OF
GEMM USING TENSOR AND CUDA CORES

A. WMMA API
The warp-level matrix-multiply-and-accumulate (WMMA)
API was introduced in CUDA 9 [2] to enable the programming
of GPU Tensor cores [12]. The WMMA API allows GPU
programmers to directly use Tensor cores to perform the
computation D = A × B + C, where A, B, C, and D are tiles

of larger matrices. Threads in a warp cooperatively perform
a matrix-multiply and accumulate operation. The size of the
tile A, B, C, and D are denoted as M × N × K, where M × K
is the dimension of tile A, K × N is the dimension of tile B,
and M × N is the dimension of tile C and tile D. In CUDA 9
with PTX ISA 6.0, the fundamental tile size is 16×16×16.
PTX ISA 6.1 introduces more tile size variants, 8x32x16 and
32x8x16 [2].

There are three functions related to WMMA in the CUDA
API: load matrix sync, store matrix sync, and mma sync.
The load matrix sync and store matrix sync functions load
and store part of the input matrices into the registers, so
that each thread can access the data. The matrix multiply-
accumulate operation is performed by the mma sync func-
tion. The result is an M × N (e.g., 16 × 16) tile for the
D matrix, which is then saved in the register file. Besides
the WMMA API, NVIDIA also provides support in other
high-level programming interfaces to program Tensor cores,
including cuBLAS [6], cuDNN [7], and CUTLASS [9].
B. Offloading from Tensor cores to CUDA cores
As the CUDA cores are mostly idle during the Tensor cores’
execution of matrix multiplication instructions within the
GEMM kernels, we design an architecture to offload some
parts of the workload from the Tensor cores by translating
some of the WMMA instructions into multiple MAC instruc-
tions and sending them to be scheduled on CUDA cores –
particularly, the FP32 compute units. The number of resulting
MAC instructions will depend on the matrix-tile-size (m-n-k)
of the respective MMA instruction.

For example, an MMA instance in our experiment has a
tile size of m16n16k16, i.e., matrix multiplication of two
16x16 square tiles. The whole matrix multiplication operation
contains a total of 4096 multiply-accumulate operations. Given
that the CUDA cores execute in a SIMD model with 32
threads per warp, this MMA instruction can be translated into
4096/32 = 128 MAC warp instructions. Algorithm 1 shows



Fig. 2. Scheduling scenarios for Warp Scheduler with Offloading.

Fig. 3. One MMA instruction to multiple MAC instructions.

the scheduling procedure we designed to offload Tensor cores’
work to CUDA cores.

The Warp Scheduler will need two functional sub-units to
perform the offloading: a counter and an instruction translator
to translate an MMA instruction into multiple MAC instruc-
tions working on the same set of registers. Fig. 2 shows
two scenarios: one in which the Warp Scheduler schedules
an MMA instruction to the Tensor cores in the normal way,
and one in which it translates the MMA instruction and
sends the resulting MAC instructions to CUDA cores. Fig. 3
illustrates the procedure of translating an MMA instruction
into corresponding MAC instructions.

Most GEMM kernels running on Tensor cores use half-
precision data type, i.e., FP16, which is also the case in our
Cutlass benchmarks. Some newer applications, which arose
after the release of Ampere architecture, may also use the
smaller INT8 and INT4 data types that are supported by
Ampere. CUDA cores use mainly F32 and INT32 operations,
so it will need some conversion between the data types.
The conversion function is already supported in most current
GPUs. NVIDIA’s GPUs from the Pascal generation and CUDA
8 already support inherent datatype conversion within the
pipelined instruction execution, without the need for separate
data conversion operations [11]. For instance, depending on
the applications’ requirement, Pascal GPUs, which do not have

Algorithm 1: Algorithm for Warp Scheduler to offload
task from Tensor cores to CUDA cores
Input: mma inst=decoded mma instruction;

mma counter=count of mma instructions since
last offload

m, n, k = mma inst.mnk
mma latency = 64
mac latency = 4
// instructions’ latencies can change
depending on hardware architecture
version
// the used latencies are from Volta
TitanV & Turing RTX2060
configurations on GPGPU-Sim 4.0.1

threads per warp = 32
// NVIDIA has always used 32 threads
per warp

num of mac inst = (m*n*k) / threads per warp
offload rate = 1 + (num of mac inst * mac latency) /

mma latency
// in our case, with m = n = k = 16,
offload_rate = 9

if ((mma counter+1) == offload rate) &&
cuda cores is available() then

translate and issue to cuda cores( mma inst )
mma counter = 0

// reset the counter
else

issue to tensor cores( mma isnt )
if mma counter ¡ offload rate then

mma counter++
// only increase counter when

"counter < rate"
// if "counter==rate" while CUDA

fp32 pipelines are occupied, then
issue the MMA to Tensor cores but
keep the counter

end

Tensor cores, already can accept input under FP32, FP16, or
INT8 format to produce both FP32 and FP16 output without
any impact on performance.

C. Additional load-store unit
Another bottleneck in the execution of the GEMM kernels
is the long data path between global memory and shared
memory, which causes significant stall time for all computation
units, i.e., Tensor cores and CUDA cores. In the Volta and
Turing architecture, when loading data from global memory
to shared memory, the data must be first loaded into registers
before being written into shared memory. Similarly, when
writing data from shared memory back to global memory, the
data must go through the registers again. Later architectures,
starting from Ampere, resolved this issue by designing new
direct asynchronous data paths between global and shared



Fig. 4. Datapath between Global and Shared Memory before and after Ampere
Architecture.

memory [14]. Fig. 4 illustrates the global-shared memory data
paths in architectures before and after Ampere.

In our experiments, we found the load-store units are the
performance bottleneck in offloading tasks from Tensor cores
to CUDA cores as in the baseline design shown in Fig. 5(a).
We developed two design optimizations to relieve this bottle-
neck. In the first design, we added a common ldst-unit, which
effectively increases the bandwidth for all memory operations
as shown in Fig. 5(b). In terms of hardware, this means adding
extra data pipelines parallel to the current ones. The added
links between L1D and ldst-units will provide extra bandwidth
when data needs to flow through L1D → LDST → registers
to get to shared memory.

However, with Ampere’s new direct link between L1D
and shared memory, the extra bandwidth between L1D and
LDST may not be fully utilized. Due to this reason, we
also devised another alternative. We designed a special load-
store unit that only handles data transactions between shared
memory and registers, which is shown in Fig. 5(c). Only extra
data pipelines are needed here between shared memory and
registers. This design option is more applicable to Ampere and
later architectures because redundant pipelines are removed in
those architectures.

To implement our proposed offloading from Tensor cores,
extra hardware is needed. This include counters, an MMA
instruction converter, and extra links. Extra ldst units are also
needed if higher performance is desired and larger perfor-
mance improvement requires more complicated ldst units.

III. EVALUATION

A. Experiment Setup
We used GPGPU-Sim 4.0.1 [18] with CUDA Toolkit and
Cutlass 1.3 to simulate the proposed offloading architecture.
We have two baseline configurations that are the TitanV, which
represents Volta architecture, and the RTX2060 for Turing

Fig. 5. Load-Store Unit(s) controlling the Datapath within the SM in the
baseline and proposed architectures.

architecture. We evaluated the proposed technique against
each of their baselines separately. Table II shows the con-
figurations we used for our experiments for Volta and Turing
architectures respectively. We used the cutlass performance
test benchmark – mainly the WMMA-GEMM kernels from
Cutlass 1.3 benchmark suite [8] to evaluate the baseline and
our proposed architecture performance. GEMM kernels are the
building-blocks that carry the most weight of computations in
neural network applications. The performance improvement in
GEMM kernels’ can be used to represent that of the high-level
neural network applications.
B. Evaluation Metrics
We evaluated GEMM kernels with square-matrices of variable
size, from 128x128 to 2048x2048. The most important eval-
uation metric in our experiment is normalized performance,
which is calculated as the inverse of execution time, nor-
malized against the baseline. Another key metric we used
to evaluate the offloading architecture’s performance is the
occupancy rates of the cores. There are two different occu-
pancy measures that we evaluated: 1 occupancy as the ratio
of each core’s occupied time over the kernel’s total execution
time. A core’s “occupied time” is the time that it is executing
an instruction; and 2 the occupancy rate as the ratio of the
core’s occupied time over its “online” time. Here, “online
time” is the difference between a core’s first activated time and
its last instruction completion time. Of those two occupancy
rates, the first one is the overall evaluation of performance,
whereas the second one can provide some insights into power-
related issues. For both metrics, higher values indicate better
utilization and less wasted resources.
C. Normalized Performance of GEMM Kernels
Our evaluation results in Fig. 6 show that the offloading
architecture achieved up to 5.71% increase in normalized
performance for the Volta TitanV GPU. When combined with
an additional shared memory side ldst-unit, we can achieve
up to 13.07% performance improvement. If we replace the
shared-memory side ldst-unit with a general full ldst-unit, up
to 29.03% performance improvement can be achieved.

For Turing RTX2060, the offloading design achieved up to
9.07% improvement alone as shown in Fig. 7. Up to 17.77%
and 22.72% performance gain is observed when the shared
memory ldst-unit and full ldst-unit are applied respectively.



TABLE II
GPU SYSTEM CONFIGURATION

GPU Type Volta TitanV Turing RTX2060

Device Limit Kernel launch latency = 0 Kernel launch latency = 0

SM 80 SMs in 40 clusters, 1.2GHz, 4 sub-cores per SM 30 SMs in 30 clusters, 1.365 GHz, 4 sub-cores per SM

Warp Scheduler 4 W-Schedulers per SM (1 per sub-core), policy: Greedy-Then-Oldest 4 W-Schedulers per SM (1 per sub-core), policy: Greedy-Then-Oldest

Shared Memory 96 KB, limit 64 KB max per thread-block 64 KB, limit 64 KB max per thread-block

Cache 128 KB L1-I-Cache (64 sets/16 ways LRU) per SM, 32 KB L1-D-Cache
(1 sets/256 ways LRU) per SM, 96 KB L2-Cache for each memory sub-
partition (32 sets/24 ways LRU) (total 4.5 MB L2-Cache)

128 KB L1-I-Cache (64 sets/16 ways LRU) per SM, 64 KB L1-D-Cache
(1 sets/512 ways LRU) per SM, 128 KB L2-Cache for each memory sub-
partition (64 sets/16 ways LRU) (total 3 MB L2-Cache)

Memory Model 24 Memory Controllers with sub-partition=2, 850 MHz 12 Memory Controllers with sub-partition=2, 3.5GHz

NoC topology: fly (k=88, n=1), subnets=2, 40-byte flits, dest-tag routing, num
of VCs=1, VC buffer size=256

topology: fly (k=52, n=1), subnets=2, 40-byte flits, dest-tag routing, num
of VCs=1, VC buffer size=64

Fig. 6. Normalized Performance on GEMM Kernels – Volta TitanV.

For the TitanV GPU, the proposed offloading architecture
improved performance on average by 4.5%, 10.86%, and
21.16% respectively with no extra ldst-unit, with an extra
shared memory ldst-unit, and with a full ldst-unit respectively.
For the RTX2060 GPU, the corresponding performance gain
is 7.27%, 13.53%, and 18.25%.

We also observed more performance gain when offloading is
combined with each kind of the ldst-units as compared with
the sum of performance gain from applying the techniques
individually. For instance, on the TitanV configuration, the
improvement is 12.75% for adding a full ldst-unit and 4.50%
for offloading respectively. Therefore, the total improvement
is 17.82%. However, combining those two techniques at the
same time can improve the performance by 21.16%. This
indicates the combination of two techniques can provide more
opportunities to improve resource utilization.

D. Utilization of CUDA cores during GEMM Execution
Fig. 8 and 9 show the occupancy rates for CUDA cores under
the baseline and under the proposed offloading schemes. We
observed that the baseline systems’ CUDA cores (FP32/SP-
units and their pipelines) have a utilization rate close to zero.
For larger matrices and longer kernels, this number gets even
smaller. We also observe that the CUDA cores’ occupancy
over its online time can vary a lot depending on the number
of “rounds” the selected SM needs to work during the GEMM
kernel execution. For larger kernels, the SMs do not have
enough resources to complete all tasks in one round, and they
need to split the tasks into multiple rounds.

The SMs first activate their SP-units (CUDA cores) near
the end of their first round of execution for a small workload

Fig. 7. Normalized Performance on GEMM Kernels – Turing RTX2060.

– most likely to support the Tensor cores in finalizing their
work. However, if the SM has a second round of tasks, the
SP-units will stay online and remain idle through most of the
second round. If the SM has multiple rounds to execute, the
SP-units’ idle time will keep increasing while the occupancy
rate will keep dropping to near zero.

For our proposed offloading design and with the additional
load-store unit, both occupancy measures for the CUDA
cores increase significantly. In particular, the CUDA cores’
utilization jumped from near-zero to as high as 83.06% for
the TitanV, and 94.34% for the RTX2060, with an average
of 73.44%, and 72.76% respectively. The CUDA cores’ occu-
pancy over their online time also increases significantly, to as
high as 97.07% for TitanV, and 95.95% for RTX2060, with
an average of 92.62% and 91.11%. That is because the SMs
activate their CUDA cores earlier in our design, instead of near
the end of their first work round. The CUDA cores are also
able to load more instructions to keep executing throughout
most of their online time.

IV. RELATED WORK

There have been plenty of works on improving GPU perfor-
mance [10], [25]–[27]. To improve GPU throughput, Adriaens
et al. explored spatial multitasking and proposed to partition
GPU stream multiprocessors (SM) among different applica-
tions. Their technique works at the inter-SM level [26]. For
intra-SM optimization, Zhao et al. explored the opportunity to
take advantage of the idling and underutilized CUDA cores
during Tensor cores’ execution [25].

They proposed a method to improve the utilization of
CUDA cores in parallel with Tensor cores by running a non-



Fig. 8. CUDA cores’ occupancy during GEMM Kernels – Volta TitanV.

Fig. 9. CUDA cores’ occupancy during GEMM Kernels – Turing RTX2060.

GEMM kernel from a different application in parallel with the
GEMM kernel on Tensor cores.

Their technique can improve the GPU throughput. However,
their technique has limitations in applicability because it
requires different types of applications, i.e., both GEMM and
non-GEMM types. Furthermore, the multiple applications in-
volved need to have long kernels so that they can be scheduled
to run over a long period of time to offset the profiling
and scheduling overheads. This limits their techniques to be
useful to only data centers. In contrast, our approach of
offloading does not need parallel non-GEMM kernels while
still improving the GPU throughput. In addition, we do not
need compiler or software support for running multiple kernels
in the same SM.

V. CONCLUSION

In this work, we explored schemes to improve the GPU
throughput by running GEMM-based applications on Tensor
cores and CUDA cores in parallel. We proposed architecture
optimization for effective task offloading from Tensor cores
to CUDA cores when executing a GEMM kernel. Without
modifying software, our technique can achieve a performance
improvement by as much as 19.69%.
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