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Abstract—CNN models used in disease management systems
for disease detection are typically stored and executed on remote
cloud servers, communicating with sensors over the internet. This
paradigm raises concerns about data security and reliability,
especially in remote farmlands. Edge computing introduces a
computing layer closer to sensory nodes, enabling more reliable
communication and faster results. These edge devices are often
resource constrained and cannot run CNN models that need
high memory and computation. Since plant disease semantics are
simple and consistent across channels, Chroma-Sense proposes
processing the R, G, and B channels independently using the same
feature extractor. Individual processing reduces the width of the
feature extractor, lowering RAM usage and number of computa-
tions performed. In addition, reusing the same feature extractor
minimizes the parameter count, the Flash memory required to
store the model, enabling efficient edge deployment. Proposed
Chroma-Sense was trained on a subset of the PlantVillage dataset
and achieved a 25% reduction in peak RAM usage and a 60%
reduction in flash memory when tested on three different edge
devices with varying heap and storage capacities.

Keywords—Smart Agriculture; Artificial Intelligence; Convo-
lutional Neural Network (CNN); Edge Computing; Semantics;
TinyML.

I. INTRODUCTION

In the realm of smart agriculture [1], many agricultural prac-
tices have been automated with the help of Internet of Things
(IoT) and Artificial Intelligence (AI). Subsequently, disease
management systems capable of identifying diseases using
computer vision techniques [2] were developed. Since these
Convolutional Neural Network (CNN) models [3] are com-
putationally intensive, they are traditionally hosted on high-
performance computation devices in cloud, with the sensor
devices communicate with them using internet technologies.
In this architecture, sending the data over a network induces
latency and security concerns and in rural scenarios with
limited connectivity, it also hinders productivity. To handle
these challenges, a new computing framework called "Edge
Computing" [4] has been introduced, enabling computations to
be performed locally, closer to the sensor devices as illustrated
in Fig. 1.

While edge computing offers various benefits by elimi-
nating the need for centralized servers, it also introduces
new constraints, such as limited computational resources and
low memory (RAM and Flash) availability, which hinder
its adoption [5]. Therefore, the ML models developed to
detect/classify plant diseases are supposed to satisfy technical
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Figure 1: 3 Layered structure of IoT.

constraints without compromising the advantages of edge
computing. Many models, architectures have been designed to
reduce the model size, computations performed and memory
requirements, enabling them to operate efficiently in resource-
constrained edge environments. In the same context, this paper
"Chroma-Sense" presents a novel Sequential Multi-Channel
CNN architecture designed for a plant disease classification,
aimed at reducing the memory required to store and run the
ML model on an edge device. The organization of rest of
the article is as follows: Section II introduces the proposed
solution and its novel contributions, while Section III offers
a brief review of related research. The proposed method is
detailed in Section IV, with experimental results presented in
Section V. The article concludes with Section VI, which also
outlines potential directions for future research.

II. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

A. Proposed Solution of the Current Paper

Plant diseases typically manifest as spots, patches, textures
on leaves, often characterized by distinct colors. Table I
provides an overview of several leaf diseases, compiled based
on descriptions available on the PlantVillage website [6].

A detailed examination of features of plant leaf diseases
reveals that their distinguishing features are relatively simple
and include patterns such as rings, patches, circles, stripes
(continuous patches), mosaics (alternating dark and bright
regions), powdery textures (noise-like appearance), velvety
surfaces, and leaf curls. The CNN architecture required to
learn these patterns is relatively simple and does not need to be



Table I: Overview of symptoms for selected plant diseases.

Plant Disease Leaf symptoms Features

Apple Apple
scab

Round yellow spots that
enlarge and turn brown.

Semantics: Spots
Colors: Yellow, Brown

Apple Ceder
rust

Bright orange or yellow
spots surrounded by a red
ring with a black spot at
the center.

Semantics: Spots, Ring
Colors: Yellow, Orange,
Red, Black

Grape Powdery
mildew

White, powdery growth
appears on leaves.

Semantics: Velvety
Color: White

Grape Esca Appearance of interveinal
chlorosis or necrotic strips

Semantics:Stripes
Colors: Brown, Black

Tomato Leaf
mold

Yellow spots that enlarge
and turn brown.

Semantics: Spots
Colors: Yellow, Brown

Tomato Mosaic
virus

Infected leaves exhibit
dark green mosaic

Semantics: Mosaic
Color: Dark and light
green

Tomato Septoria
spot

Circular spots with dark
brown margins and gray
centers

Semantics: Spots
Colors: Gray, Brown

very deep [7]. Learning these patterns alone is insufficient for
effective disease classification; the network must also identify
features within the color space to achieve accurate results.
In computer vision, images are represented using the Red
(R), Green (G), and Blue (B) color channels, where different
colors are more prominently expressed in specific channels. An
example of a synthesized image of Apple Cedar Rust disease is
presented in Fig. 2, with its R, G, and B channels represented
in gray scale.
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Figure 2: Illustration of features of Apple Ceder Rust disease.

The center of the Apple Cedar Rust disease symptom
appears as a black spot, which is dark across all three channels.
Since yellow is a combination of red and green, the yellow
region surrounding the center appears bright in both the red
and green channels. Additionally, the surrounding red ring is
bright exclusively in the red channel. From this observation,
it can be concluded that plant diseases can be effectively clas-
sified by analyzing simpler semantic features across different
color channels as illustrated in Fig. 3 and inferring from these
findings. This approach eliminates the need for complex CNN
architectures designed to learn intricate concentric patterns that
are sensitive to color differences.
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Figure 3: Illustration of features needed to be learned.

As the complexity of the features to be learned decreases,
they can be achieved with fewer feature maps at each layer
per color channel. From the prior discussion, it is evident that
the feature maps to be learned across the R, G, and B color
channels are identical. Processing the R, G, and B channels
of an image using the same CNN network to extract features
reduces the parameter count and the flash memory required to
store the model. Furthermore, by processing the R, G, and B
channels sequentially, the RAM needed to store intermediate
activations and feature maps is significantly reduced. This
approach also decreases the cumulative number of Multiply-
Accumulate (MAdd) operations by 60%, thereby speeding up
inference. Thus, the Serial Multi-Channel Processing proposed
in this paper contributes to a memory-efficient CNN model for
edge devices.

B. Novelty and Significance of the Proposed Solution

The novel contributions of Chroma-Sense are as follows.
1) Memory Efficiency: This article proposes processing the

R, G, and B channels in the image individually and
sequentially, which reduces the width of the CNN model
by about two-third and significantly decreases the RAM
required.

2) Reduction in parameter count: The plant leaf disease-
specific design allows reuse of the CNN feature extractor
across all color channels, reducing the parameter count
while simplifying and speeding up inference.

3) Simplified Semantic Feature Extraction: As the CNN
network processes grayscale images of each channel, it
is compelled to learn shapes and textures [8], leading to
more effective feature extraction.

4) Explainability: By extracting channel-specific features
and stacking them for classification, the proposed archi-
tecture embeds spatial information, making the decision-
making process transparent and explainable [9].

III. RELATED PRIOR WORKS

With the development of CNN architectures for effective
image classification, such as LeNet-5 and AlexNet, researchers
have increasingly utilized these models for classifying plant
diseases. In [3], the authors presented the results of AlexNet
and GoogLeNet on a plant disease dataset. Similarly, [10]
provided results for ResNet on a similar dataset. Multi channel
network ensemble in [11] processes features from R, G, B
channels, Gabor filters, and PCA, to classify images through
majority voting across these channels.

While the aforementioned methods achieve good accuracies,
they are computationally intensive and are not specifically
designed for edge devices, need lot of RAM to execute . The
articles [12] presented a CNN model with very few layers
to fit in edge devices but does not propose any architectural
changes to optimize edge performance. The authors of [13]
introduced an encoder-decoder-based classification model with
reduced parameters, specifically designed for binary classifica-
tion. In contrast, novel architectures with fewer parameters and
reduced computational requirements, with moderate network



width, were introduced in EfficientNet [14] and MobileNet
[15]. The introduction of separable convolutions and squeeze-
and-excite mechanisms made these architectures suitable for
use on edge devices. The application of these methods for
plant disease classification was presented in [16] and [17]. A
brief overview of the related works is summarized in Table
II. Along similar lines, the proposed method incorporates
parameter reduction techniques from edge-optimized models
and introduces an innovative serial multi-channel processing
approach, designed for plant disease classification with a focus
on reducing memory usage.

Table II: Relevant literature on plant disease detection.

Research Method adopted Remark

Mohanty et al.
[3]

AlexNet, GoogLeNet Models are generic and not
optimized for edge devices.

Archana et al.
[10]

ResNet-50 Models are generic and not
optimized for edge devices.

Peker [11] Multi channel
network ensemble

Cumulative features across
R,G,B channels are not
considered.

Rakib et al.
[12]

A reduced CNN
model with layer
quantization

Layers are reduced and
optimized for edge devices,
but not the architecture.

Bedi and Gole
[13]

Convolutional
auto-encoder

Optimized for plant
diseases but limited to
binary classification.

Chowdhury et
al. [16]

EfficientNet Models are optimized for
edge devices but not for
plant diseases.

Ashwinkumar
et al. [17]

MobileNet Models are optimized for
edge devices but not for
plant diseases.

Chroma-Sense MobileNet style
parameter reduction
with serial multi
channel processing

Models are optimized for
edge devices and for plant
diseases.

IV. PROPOSED METHOD

In the edge computing paradigm, computation is performed
closer to sensory devices, resulting in limited computing
resources being available. To operate within this constrained
environment, the ML model’s parameter count must be small
enough to fit within the Flash memory. Additionally, the
activations per layer should be minimized to ensure they fit
within the available SRAM. Traditionally, input images of
size 96x96x3 are used for edge applications. Additionally,
all model weights and biases are quantized to Int8 instead
of Float32 to enable efficient deployment on edge devices.
This paper adopts Separable2D convolutions, as proposed by
MobileNet [18], and proposes processing the R, G, and B
channels individually using the same feature extractor, as
illustrated in Fig. 4.

The disease semantics for each color channel are simple,
such as circles, rings, dots, and patches, but at different scales.
By processing the channels individually, feature maps can
be obtained with reduced computational cost. Additionally,
the semantics are the same across the channels, but their
combination required for inference differs depending on the
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Figure 4: Proposed architecture for serial processing.

disease. So, this paper proposes use of same feature extractor
across all channels as shown in the Fig. 4. Since the same
model is used, the inputs are fed sequentially, resulting in
"Serial Multi-Channel Processing". As mentioned, to perform
detection, we need a mask that contains information from all
channels. Therefore, we concatenate the feature maps from the
R, G, and B channels and apply point-wise convolution. This
generates new feature maps by performing a weighted linear
sum of the concatenated features, with attention given to the
most prominent channels, an example of such filter creation
is presented in Fig. 4. Thus, by stacking and generating
comprehensive filters with the help of attention, the correlation
lost due to independent processing of channels is restored,
along with the spatial correlation.

With the appropriate filter generated, the model will be able
to identify all locations in the leaf with disease presence. Plant
diseases do not have strict constraints on where they appear
on the leaf or how many instances are present. They tend
to appear randomly. Due to the nature of the diseases, the
disease patterns are not strictly uniform. For example, the outer
ring of a disease symptom may not always form a perfect



circle or be evenly spaced from the inner circle. Sometimes,
the borders may merge. Under these circumstances, applying
Global Average Pooling would result in misclassifications
as presented in Fig. 5. Image 1 contains multiple disease
instances with varying activations, where average pooling
resulted in 0.561 and max pooling resulted in 1. In contrast,
Image 2 has only two instances, resulting in 0.2 for average
pooling and 1 for max pooling. This variation in activations
due to average pooling can lead to misclassifications, and
when the model is quantized to Int8 as part of TinyML, the
error is magnified. Therefore, we propose the use of "Global
Max Pooling" to ensure that the model focuses on the spots
that align well with the filter, thereby enhancing the model’s
accuracy.
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0 1 0.9
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0 1 0
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Figure 5: Comparison between average and max pooling.

Multiple networks were designed by reducing the depth
and width of the layers while maintaining explainability.
The optimal classification model, together with the proposed
feature extractor, is shown in Fig. 6. For simplicity, batch
normalization layers have been omitted from the diagram.
While employing SeparableConv2D, the proposed model aims
to reduce the number of parameters required. Since each color
channel is processed individually, extracting just 32 features
has provided satisfactory results, significantly reducing the
RAM required to store intermediate activations. At this low
number of features, the linear bottleneck with inverse residual
connections would not provide significant benefits, and thus,
they were not used in the model. Since the model uses the
same feature extractor three times, the parameter count is
significantly reduced, leading to a smaller model size and less
Flash memory required to store the model.

V. EXPERIMENTAL VERIFICATION

The proposed Chroma-Sense was developed using Python
and TensorFlow for the CNN classification model, with Ten-
sorFlow Lite used to quantize the model to Int8. It was
individually validated on 4 plant types, using a total of 18,000
images across 18 classes from the PlantVillage dataset [19].
Images from the original dataset were cropped and split in
a 80:20 ratio while ensuring that disease semantics were
the only consistent feature across all images, enabling the
model to effectively learn the intended patterns. The proposed
model was trained on images of Apple, Tomato, Grape, and
Corn plants. Grad-CAM results for the model trained on
96×96×3 images with F32 parameters are presented in Figs.
7 to 10, respectively. The trained models were converted to

Total 
Parameters 7,352

Trainable 
Parameters 7,352

Non-trainable 
Parameters 0

InputLayer
(None, 96, 96, 1), 0 Param

Conv2D (3x3)
(None,96,96,8), 80 Param

MaxPooling2D (2x2)
(None,48,48,8), 0 Param

SeparableConv2D (3x3)
(None,48,48,24), 228 Param

MaxPooling2D (2x2)
(None,24,24,24), 0 Param

SeparableConv2D (3x3)
(None,24,24,48), 1416 Param

MaxPooling2D (2x2)
(None,12,12,48), 0 Param

SeparableConv2D (3x3)
(None,12,12,48), 2746 Param

MaxPooling2D (2x2)
(None,6,6,48), 0 Param

SeparableConv2D (3x3)
(None,6,6,48), 2746 Param

MaxPooling2D (2x2)
(None,3,3,48), 0 Param

Proposed Feature Extractor Proposed Classification Model

InputLayer
(None, 96, 96, 3)

Lambda
(None, 96, 96, 1)

Lambda
(None, 96, 96, 1)

Lambda
(None, 96, 96, 1)

Model (Feature Extractor)
(None, 3, 3, 48), 7352 Param

Concatenate
(None, 3, 3, 144)

Conv2D (1x1)
(None, 3, 3, 16)

GlobalMaxPooling2D
(None, 16)

Dense (SoftMax)
(None, No of Classes)

Conv2D (1x1)
(None, 3, 3, 48)

Figure 6: Proposed model for classification.

Int8 parameters, quantized using TensorFlow Lite, a TinyML
framework, to reduce the model size for efficient deployment
on edge devices. The Int8 quantized model achieved validation
accuracies of 93% for Apple while Tomato, Grape and Corn
attained 89%, 96% and 93% , as shown in Table III.

Healthy

Black ScabCedar Rust

Black Rot

Figure 7: Grad-CAM results for the Apple dataset.

For testing the deployments, we chose the OpenMV H7 with
minimal memory, the OpenMV H7 Plus with more memory,
and the Arduino Nicla Vision with moderate memory and dual
cores, as described in Table IV. These devices, initially load
models from flash memory to frame buffer and utilize heap
memory to perform inference. So, the size of the model that
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Figure 8: Grad-CAM results for the Tomato dataset.
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Figure 9: Grad-CAM results for the Grape dataset.
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Figure 10: Grad-CAM results for the Corn dataset.

Table III: F1 Scores for different crop types.

Apple F1 Score Tomato F1 Score

Healthy 0.93 Healthy 0.90
Black Rot 0.93 Mold 0.88
Black Scab 0.95 Curls 0.88
Cedar Rust 0.91 Blight 0.91

Mosaic 0.90
Septoria Spot 0.87

Grape F1 Score Corn F1 Score

Healthy 0.97 Healthy 0.94
Black Rot 0.95 Rust 0.91
Esca 0.96 Blight 0.92
Blight 0.96 Leaf Spots 0.95

Table IV: Comparison of edge devices tested for the models.

Edge Device Heap
Memory

Flash
Memory

Processor

OpenMV H7 256KB 128KB Cortex-M7
OpenMVH7 Plus 4MB 32MB Cortex-M7
Arduino
Nicla Vision

256KB 16MB Cortex-M7 +
Cortex-M4

can be run on the device is constrained by the available mem-
ory. Prior works discussed in Section III adopted prominent
CNN architectures with varying depths and widths while this
paper proposes a serial multi-channel processing architecture
with a different depth and width. To make a fair comparison,

Table V: Enhancements incorporated into different models.

Model Enhancement

Conv2D Standard Conv2D layers with no optimization.
Grouped Conv Reduced parameters through group convolution.
MobileNet [15] Reduced parameters, RAM by using depthwise

separable convolution.
MobileNetV2 [18]
(Stride 2 used)

Improved expressive power while reducing
feature map size and memory usage.

MobileNetV3 [20]
(Stride 2 used)

Attention mechanisms helped reduce feature
maps and memory usage, parameters.

EfficientNetV2
[14]

Fused-MBConv improved training speed and
increased computations.

SqueezeNet [21] Fire modules reduced parameters but required
more memory for expansion.

ShuffleNet [22] Enhanced feature cross-talk improved expressive
power and reduced parameters, but did not save
memory.

Squeeze and
Excitation [23]
(Stride 2 used)

Attention mechanisms enhanced expressive
power and reduced memory usage, but increased
computations.

Multi-Channel
CNN

Serial processing helped reduce memory usage,
parameters, and computational requirements.

Chroma-Sense
(Stride 1 used)

Reduced memory usage, parameters, and com-
putations with serial processing and
separable convolutions.

rather than directly comparing the exact works, we developed
models based on the architectures from the discussed works
but with a CNN network that is three times the width of
the network proposed in Section IV to accommodate the
simultaneous processing of the R, G, and B channels, while
maintaining the proposed depth. A brief description of each
model, along with its proposed enhancements, is presented
in Table V. The results of the developed models, tested on
different edge devices, are presented in Table VI.

The presented models were tested on the same dataset for 30
epochs with batch normalization. For some models, the .tflite
files generated were larger than the available flash memory,
while for a few other models that fit within the flash memory,
the heap memory required to run them exceeded the available
heap memory. So, many models were unable to run on the
H7 and Nicla Vision, and therefore, no frames processed per
Second (FPS) were reported for them. The H7 Plus had ample
memory and was able to run all the models, with Chroma-
Sense achieving the highest FPS. In the case of Apple, the
disease semantics exhibit considerable variation, while Tomato
diseases have more subtle differences, which is reflected in the
reported accuracies. ShuffleNet achieved higher accuracies on
the Apple dataset but not on the Tomato dataset, indicating that
the model struggles with generalization. The proposed model
was able to strike the right balance between memory usage,
computations, and generalization, demonstrating its suitability
for edge deployments. MobileNetV3 is the model that most
closely resembles the proposed model in terms of memory
usage and generalizability, The proposed method achieved
a 25% reduction in peak RAM needed for inference, 60%
reduction in flash memory needed to store the .tflite file while
maintaining similar accuracy and latency.



Table VI: Results comparison of models for edge deployments.

Model Acc.Int8
Apple

Acc.Int8
Tomato

RAM Flash
Memory

Parameter
Count

Madds Frames/Sec:
H7

Frames/Sec:
H7 Plus

Frames/Sec:
Nicla Vision

Conv2D 95.2 88.8 336KB 502KB 491K 130M NA 1.7 NA
Grouped Conv 86.4 71.7 336KB 187KB 169K 43M NA 4.5 NA
MobileNet [15] 86.7 86.6 341KB 99KB 66K 21M NA 5.3 NA
MobileNetV2 [18] 95.4 90.4 271KB 203KB 153K 25M NA 7 NA
MobileNetV3 [20] 92.8 92.6 216KB 138KB 97K 20M NA 5.3 7.6
EfficientNetV2 [14] 91.8 88.6 240KB 160KB 110K 27M NA 5.1 6.9
SqueezeNet [21] 97.2 83.5 338KB 80KB 56K 23M NA 6.4 NA
ShuffleNet [22] 90.2 83 347KB 129KB 88K 13M NA 2.3 NA
Sque. and Exci. [23] 82.2 79.1 149KB 550KB 527K 32M NA 5.6 NA
Multi.Ch. CNN 88.8 86.1 160KB 87KB 62K 43M 4.7 4.7 4
Chroma-Sense 93.1 89.3 160KB 54KB 15K 8.3M 8.4 8.4 7.2

VI. CONCLUSION

This paper presented a novel serial multi-channel processing
method for the effective classification of plant diseases on
resource-constrained edge devices, it enables on-board disease
classification in devices such as drones, facilitating disease
containment and automated spraying [24]. The proposed
model is designed for 96x96 resolution images and performs
classification based on multi-channel feature extraction within
the receptive field, considering the device’s memory con-
straints. This low resolution may fail to capture fine details
in images with multiple leaves or crops. Moreover, since
the model focuses on localized features within the receptive
field, it fails to capture global leaf-level features, leading to
misclassification when multiple plant types are present in the
dataset. To overcome these limitations, future work should
focus on enhancing the feature extractor’s representational
power and designing efficient memory allocation algorithms,
allowing the model to process higher-resolution images, such
as 224x224, while maintaining efficiency on edge devices.
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