
FedSecure: A Robust Federated Learning
Framework for Adaptive Anomaly Detection and

Poisoning Attack Mitigation in IoMT
Fawaz J. Alruwaili

Dept. of Computer Science & Eng. 
University of North Texas 

Denton, USA
fawazalruwaili@my.unt.edu

Saraju P. Mohanty
Dept. of Computer Science & Eng. 

University of North Texas 
Denton, USA

saraju.mohanty@unt.edu

Elias Kougianos
Dept. of Electrical Eng. 

University of North Texas 
Denton, USA 

Elias.Kougianos@unt.edu

Abstract—Deep learning (DL) technologies have been increas-
ingly employed in the Internet of Medical Things (IoMT) for
complex classification problems, such as diagnosis and monitor-
ing. Despite the significant benefits, DL has been hindered in
many industries due to data privacy concerns, as it requires
vast amounts of data to predict accurate results. To address this
issue, Google introduced a distributed learning approach called
Federated Learning (FL) where model can be trained locally
by sharing gradients rather than raw data. However, FL also
introduces new security threats, such as poisoning attacks, where
learning process can be corrupted by malicious clients. While
there are many studies have addressed FL security, they have not
including holistic considerations regarding data diversity which
affects the generalization of proposals to be used in real-world
applications. In this paper, we propose FedSecure, an adaptive
anomaly detection and poisoning attack mitigation framework for
IoMT, using hybrid deep learning models. Our FedSecure was
tested on distinct and diverse real-world datasets. Experimental
results show that FedSecure was able to detect and mitigate
poisoning attacks, thereby enhancing the security of federated
learning systems in real-world applications.

Index Terms—Healthcare Cyber-Physical System (H-CPS),
Internet of Medical Things (IoMT), Intelligent Security, Cy-
bersecurity, Federated Learning, Poisoning Atatcks, Anomaly
Detection

I. INTRODUCTION

The traditional healthcare system has transformed into a
smart system due to the revolution of electronic devices
and communication infrastructure. The medical devices and
applications are integrated by the internet of medical things
(IoMT) network, enabling remote and continuous patient mon-
itoring, diagnostics, and personalized treatment plans, which
improved the life and human quality. Artificial intelligence
(AI) technologies are integrated into the IoMT to enhance the
healthcare services and enabling a proactive management by
predicting adverse events before they occur, leading for better
patient outcomes [1].

Despite the significant benefits of AI technologies in IoMT,
the are some challenges lead to hiner the adaption of such
technologies [2]. For example, the traditional healthcare man-
agement techniques rely on a centralized framework for data
analytic, which makes data privacy and security are paramount

concerns, especially when dealing with medical data that has
higher sensitive nature as it is not only affect the privacy, but
also threaten patient life when medical decisions are based on
manipulated data [3]. Additionally, AI technologies require
vast amounts of data for training process to get accurate
predictions, which increase the privacy and security threats [4],
[5]. These challenges increased the need for a distributed and
scalable AI-based framework, and preserving the privacy.

Consequently, a distributive AI paradigm called federated
learning (FL) has introduced by Google in 2016 to address
privacy and data sufficiency challenges by training AI model
across multiple distributed devices and sharing model param-
eters rather than raw data. In the context of IoMT, FL can
be used for building robust models with keeping patients
data localized [4]. However, although FL has gained growing
attention, it has also increased concerns about its security.
For example, while FL training approach is different from
the traditional training by preserving data localized which
increasing data privacy, the nature of this approach makes the
poisoning attacks easier, where there is no clear indication
whether local data is legitimate or model parameters have
been poisoned by malicious clients. Moreover, the non-IID
(non-independent and identically distributed) nature of FL
exploited by attacker to complicate poisoning attacks, making
them harder to be detected [4]. Furthermore, due to frequent
updatesin FL, the high cost of communication and computation
remains a critical challenge, especially in large networks,
which hinders scalability in real-world applications [6].

Nevertheless, while many studies have proposed valuable
contributions on data poisoning attacks, but they remain un-
satisfactory in the face of data nature, which reduce effec-
tiveness in real-world applications [7]. Additionally, many of
these studies primarily focus on identifying malicious clients
during server-side aggregation, while the defense against such
attacks at the client-side remains a challenge with limited
investigation [8]. In this paper, we propose a FedSecure, a
real-time adaptive anomaly detection framework for the client
side to mitigate several poisoning attacks using real-world
datasets obtained from the MIMIC III [9]–[11]. Our proposal
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Fig. 1: Proposed FedSecure (decentralized anomaly detection)

is depicted in Fig. 1. where the poisoned data can be detected
on the client side. As a result, only benign devices can be
participated, ensuring that only trusted model updates are sent
to the server. The proposed FedSecure not only enhance the
security of FL process, but also contributes in reducing the
overall load on both communication and computation overhead
by filtering malicious early in FL process.

The paper is organized as follows: Section 2 introduces
the related work on poisoning attacks in federated learning,
while Section 3 presents the contributions of this paper.
The proposed FedSecure is introduced in Section 4, and the
hybird DL models used in our contribution are detailed in
Section 5. The real-world dataset is described in Section 6.
Section 7 presents the training process and model evaluation.
Experimental results and discussion are provided in Section 8,
while the conclusion and future work presented in Section 9.

II. RELATED WORK ON POISONING ATTACKS

The FL security in IoMT environments has gain substan-
tial attention, especially in addressing vulnerabilities to data
poisoning as the FL nature enables attackers to make sophisti-
cated attacks, leading to complicated detection and mitigation
efforts. In recent years, there are several studies proposed
different stratagies to mitigate such threats by implementing
anomaly detection. These proposals have made significant
advancements, particularly in IoMT where data privacy is a
primary concern.

Blockchain have been incorporated in several recent studies
to enhance FL security and mitigating poisoning attacks. For
instance, Begum et al. [12] proposed a blockchain-driven
federated learning-based intrusion detection system (BFLIDS)
which secures model updates by integrating a Convolutional
Neural Network (CNN) and Bi-LSTM models with a dis-
tributed ledger. Likewise, Kalapaaking et al. [13] integrated
blockchain with secure multi-party computation (SMPC) for
securing model updates with focusing on anomaly detection
to mitigate poisoning attacks in healthcare systems. Zeng et
al. [14] proposed a two-stage federated learning framework
using blockchain to address non-IID data challenges in IoMT
environment, enhancing client-side anomaly detection using
supervised models by filtering malicious updates. Conversely,

the proposed FedSecure design incorporate a distributed ap-
proach of adaptive anomaly detection, using client-specific
thresholds. This design reduces the blockchain-latency, en-
hancing scalability via a decentralized detection process, sup-
porting real-time IoMT applications.

In another approach, a privacy-preserving intrusion detec-
tion system (IDS) proposed for IoMT by Torre et al. [15]
employing FL with CNN to secure model updates and dif-
ferential privacy techniques fro enhancing data confidential-
ity. The proposed model in this study performs client-side
anomaly detection for different poisoning attacks. However,
this approach is effective for image-based data, which limits
its applicability to diverse data types of IoMT. In addition,
while the CNNs are effective for identifying patterns, they
are less suited for anomaly detection, especially for sequential
health data that has unusual or unexpected variations. These
limitations are addressed by the proposed FedSecure using Bi-
LSTM autoencoder integrated with a DNN classifier which
more suitable for temporal and high-dimensional nature of
health data, enabling more accurately anomaly detection even
with non-IID data.

Another study by Sarkar et al. [16] introduced a feder-
ated learning framework employing artificial neural networks
(ANNs) to address unauthorized device intrusion in IoMT
using synchronized anomaly detection. Despite the novelty of
this approach, it lacks adaptive thresholds, which increases
false-positive rates as the device-specific data variations is
not handled. This limitation is overcomed by the proposed
FedSecure, where adaptive threshold is used for each client’s
data distributions, and which provides more resilient detection
mechanism, reducing influence of benign data fluctuations.

A centralized anomaly detection method proposed by Man-
zoor et al. [17] to isolate malicious clients in FL for enhancing
the accuracy of global model. Clients can be evaluated by
mean absolute percentage error (MAPE) using Euclidean
distances and Hidden Markov Models (HMM). However, Fed-
Clamp’s does not handle the non-IID data which reduces the
defense against poisoning attacks, and it relies on centralized
detection which leads to communication and scalability issues,
especially in lager FL networks. In contrast, the proposed
FedSecure addresses these limitations through adaptive de-
centralized anomaly detection where malicious client can be
detected independently using client-specific thresholds based
on each client’s historical data distribution. FedSecure not only
mitigates poisoning attacks early, but also reduces communi-
cation load by allowing only benign clients to be participated
in FL process which enhances efficiency and adaptability to
the nature of IoMT data.

In summary, many of existing studies primarily rely on
blockchain integration, supervised approches, or fixed and
centralized anomaly detection. However, many challenges can
be faced by these approaches affecting the computational over-
head, communication load, real-time detection especially with
larger FL networks. Moreover, handling non-IID data remains
a challenge. These limitations are addressed by the proposed
FedSecure using a flexible and decentralized adaptive anomaly



detection integrating a Bi-LSTM autoencoder as a reference
model and DNN classifier, where the detection process can be
preformed in a distributed manner and at an early stage of FL
process. In addition, FedSecure is designed to accommodate
heterogeneous and non-IID nature of IoMT data, which en-
hances which enhances the denfense against poisoning attacks.
These capabilities make the proposed FedSecure a practical
and scalable solution for real-worl healthcare applications.

III. PROPOSED CONTRIBUTION

The security of federated learning in IoMT systems has
significant challenges due to vulnerabilities, especially re-
garding data poisoning attacks. Traditional approches which
rely on centralized detection methods or that blockchain-
based methods hindered by some security issues, such as
high computational overhead, scalability, communication la-
tency, handling diverse. Our proposal, FedSecure, introduces
an adaptive, decentralized anomaly detection framework that
directly addresses these limitations through a novel client-
specific approach to anomaly detection, which enhances the
robustness of FL in IoMT applications. Our main contributions
are highlighted as follows:

• Adaptive and Decentralized Anomaly Detection: Unlike
previous related studies that employ centralized detec-
tion or blockchain-based latency-prone frameworks, the
proposed FedSecure integrates adaptive and decentralized
anomaly detection using a Bi-LSTM autoencoder and
a DNN classifier. By this approach, the anomaly can
be detected independently on each client device using
client-specific thresholds. Thus, reducing the reliance on
centralized processing or blockchain consensus which
reduces communication overhead and distirbuting com-
putational overhead to enhance the scalability.

• Adaptive and Decentralized Anomaly Detection: Unlike
previous related studies that employ centralized detec-
tion or blockchain-based latency-prone frameworks, the
proposed FedSecure integrates adaptive and decentralized
anomaly detection using a Bi-LSTM autoencoder and
a DNN classifier. By this approach, the anomaly can
be detected independently on each client device using
client-specific thresholds. Thus, reducing the reliance on
centralized processing or blockchain consensus which
reduces communication overhead and distirbuting com-
putational overhead to enhance the scalability.

• Handeling Non-IID Data: Existing methods, such as those
of Torre et al. and Sarkar et al. struggle with data diver-
sity, especially with vary significantly data distributions
across different devices, which increases false-positive
rates or compromised the accuracy of detection process.
FedSecure overcomes these limitations by implementing
a client-adaptive thresholding mechanism based on the
historical statistics of anomaly scores, which reduces the
false positives and enhance the detetcion accuracy which
makes FedScure more flexible to the non-IID nature of
IoMT data.

• Early-stage Anomaly Detection: A signaficant limitation
of centralized detection approaches, such as those pro-
posed by Manzoor et al., is that detecting malicious
updates is delayed after aggregation process which ad-
versely affect the global model. FedSecure addresses this
limitation by detecting anomly in early-stage at the client-
side, where the malicious clients are isolated before their
updates sent to the cetral server, and only benign clients
participate in the FL process. This will not only enhance
the security of FL, but also reduces the unnecessary
communication by excluding compromised devices early.

• Flexibility for Diverse and Complex Health Data: While
many previous existing studies focus on structured or
image data, FedSecure is optimized for high-dimensional,
sequential nature of IoMT data, modeling complex tem-
poral patterns within health data accurately. This is crit-
ical for anomaly detection that characterize poisoning
attacks.

In summary, FedSecure contributes to a scalable and adapt-
able solution for enhancing FL security in IoMT environment
with contributing in decentralized, client-specific detection,
early-stage intervention, and handleing non-IID data. These
contributions overcome the critical limitations, such as scala-
bility, adaptability, and real-time detection.

IV. PROPOSED FEDSECURE

The proposed FedSecure introduces a robust decentralized
adaptive anomaly detection framwork designed for mitigating
poisoning attacks in FL environment within IoMT. The Fed-
Secure design integrates deep learning models (Bi-LSTM au-
toencoder and DNN classifier) and employ them for anomaly
detection to prevent the manipulated data from participating
in the federated learning updates in early-stage. One of the
IoMT challenges that addressed by FedSecure is handling the
diverse and non-IID data, which is collected from different
local medical devices.

For establishing baseline models, FedSecure trains the refer-
ence model (Bi-LSTM) on cleaned real-world data, where the
DNN model is employed to classify the recontruction errors
produced by the reference model (Bi-LSTM) and produce
anomaly scores. After training process, these integrated mod-
els are distributed to client devices to be used in local training.
FedSecure focuses on adaptive anomaly detection to mitigate
poisoning attacks before any model update is sent to the central
server, which reduces the communication overload by allowing
only for benign local device to send model updates.

Fig. 2 illustrates the client-side workflow, where each local
device data is reshaped into overlapping sequences with a
specific sequence length (e.g., 60). The sequence structure
is primary to capture the temporal patterns, especially in
healthcare data where the value in a given time is typically
depends on its previous values. This temporal relationships
is preserved by when the data is reshaped into overlapping
sequences, which helps the model to learn medical patterns. As
depicted in Algorithm 1, after reshaping data, the pre-trained
reference model (Bi-LSTM) reconstructs each input sequence
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locally. Then, the model will produce the reconstruction errors
by comparing each output to the original input. These errors
measure how accurately the natural patterns are captured by
the model, where the larger errors indicate large deviation from
the expected patterns that the model learned. In other word,
the reconstruction errors highlight the deviations from the
excpected patterns by capturing the sequential dependencies
in the medical data which is a critical issue in IoMT where
physiological signals make it hard to distinguash between true
anomalies from false positives.

The pre-trained DNN classifier further classifies the pro-
duced errors by the reference model and produces an anomaly
score for each sequence. The responsibility of the DNN
classifier is to refine the produced errors into anomaly score
distribution tailored to each device by assigning higher prob-
abilities to scores related to potentially poisoned behavior.
The DNN classifier plays an important role for adjusting to
individual device characteristics, where it produces anomaly
scores that reflect the patient-specific variations. This is very
important especially in federated learning which has diverse
and non-IID data sources. Due to the meaningful anomaly
scores produced by DNN classifier, the threshold will be
effective to distinguash between benign and poisoned devices
based on anomaly profile of each device. Once the anomaly
scores calculated, they will be evaluated to set threshold based
on their statistical distribution to detect anomalies.

In our propsal, the accuracy of detecting malicious client
who manipulate data in federated learning is critical issue
to mitigate potential poisoning attacks, especially in IoMT.
Therefore, we designed a robust, adaptive, and dynamic
device-specific threshold mechanism for detecting different
types of data poisoning. Threshold mechanism adapts to local
device’s data distribution dynamically by analyzing and eva-
luting the historical statistical metrics of anomaly scores (e.g.,
mean, standard deviation, etc.) as shown in Fig. 3. allowing to
make detection process personalized to individual variations.
The statistical metric for each local device includes the mean
score, standard deviation, and the difference score which is
the absoulate difference between the first and the last scores
in a sequence.

Once threshold is set for each local device, all local se-
quence scores for that device are compared against its specified

threshold. If a sequence score exceeds the threshold, the device
is flagged as a potential poisoning attack. In this case, the
flagged local device will be classified as an abnormal device
and excluded from any further model updates or communi-
cations with central server, which enhancing the security of
federated learning and mitigating poisoning attacks.
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After malicious clients are excluded through adaptive
anomaly detection, only normal clients performs local updates
on the local model based on their clean data. The normal
devices then send their model updates to the central server
ensuring that aggregation process is only performed on normal
and reliable updates. Thereby, securing the process of feder-
ated learning without heavy communication or computation
overhead. With assuming secure communication channels, this
aggregation process preserve the integrity of the federated
learning process by isolating the compromised data from
affecting the global model. On the other hand, maintaining
efficient communication and computational demands and en-
sure scalability.

V. REFERENCE MODEL (BI-LSTM) AND DNN
CLASSIFIER

A. Reference Model (Bi-LSTM)

In our proposed FedSecure, A Bi-LSTM (Bidirectional
Long Short-Term Memory) model is used for anomaly detec-
tion with higher accuracy compared to traditional LSTM mod-
els, particularly in sequential data, such as time series data,
where the data can be processed in both directions (forward
and backward) [18]. The bidirectional approach can capture



Algorithm 1 Adaptive Anomaly Detection in FedSecure

Require: Client data Xi, Sequence length n, Trained Bi-
LSTM model MBiLSTM, Trained DNN classifier MDNN,
Anomaly threshold τi

Ensure: Anomaly flags Ai for client i
1: Reshape client data Xi into overlapping sequences Si =

{s1, s2, . . . , sk} of length n
2: for each sequence sj ∈ Si do
3: Use Bi-LSTM model MBiLSTM to reconstruct sj , pro-

ducing ŝj
4: Compute reconstruction error Ej = ∥sj − ŝj∥2
5: Pass Ej through DNN model MDNN to obtain anomaly

score aj
6: if aj > τi then
7: Flag sj as an anomaly: set Aj = 1
8: else
9: Mark sj as normal: set Aj = 0

10: end if
11: end for
12: Aggregate anomaly flags Ai = {A1, A2, . . . , Ak}
13: if fraction of flagged sequences in Ai exceeds client

threshold Ti then
14: Exclude client i from model updates
15: end if

more complex patterns within sequential data more effectively,
considering past and future contexts simultaneously [19]. This
is essntial in the healthcare data as it has temporal patterns
relationships, where the data at a given time is related to
previous data. In the context of medical data, this advantage
is more important in anomaly detection as we have different
distributions for different patients, where the anomalies of each
patient’s data can be affected by events that occurred in both
histories (past and future time steps) of the same patient. For
example, when the system detects a sudden spike in heart
rate, this spike will be better understood by the system as it
considers the data points before and after this spike, which
helps to distinguish between normal and abnormal patterns.
This is very important in IoMT, where medical data has
long dependencies, such as delayed effects of medications or
cumulative effects of small vital sign fluctuations, leading to
proper and timely interventions.

Furthermore, due to the nature of federated learning where
the model can be trained collaboratively from different
sorurces, the ability of Bi-LSTM model to maintain higher
accuracy across diverse potentially poisoned data is critical.
The relationship between temporal pattern is preserved due to
the model capacity of analyzing sequences in both directions,
which helps to detect anomalous and mitigate poisoning
attacks that degrade the global model

Technically, before the data is input to the Bi-LSTM model,
the raw time series data is reshaped into overlapping sequences
as illustrated in Fig. 5 with a specific length representing
time windows. The sequences of time steps are represented
as X = {x1, x2, . . . , xT }, where xt denotes the input at time
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t, while T represents the sequence length. These sequences
are processed in both forward and backward directions using
two LSTM layers, as depicted in Fig. 4. Each sequence is
processed from the past to future using the forward layer,
while the backward layer processes the sequence in a reverse
direction, from future to past.

The forward layer produces a hidden state h→t at each time
step t. This hidden state is calculated based on the current
input xt and the previous hidden state h→t−1:

h→t = LSTMforward(xt, h
→
t−1). (1)

At the same time, the backward layer processes the sequence
in reverse directions, producing a hidden state h←t for future
data points relative to each xt:

h←t = LSTMbackward(xt, h
←
t+1). (2)

Since healthcare data patterns can be impacted by events in
both directions, they can be recognized effectively using such
a bidirectional structure. A combined hidden state ht at each
time step t will be formed by concatenating both the forward
and backward layers:

ht =

(
h→t
h←t

)
. (3)



The combined hidden state ht is passed to the output layer
with a rich temporal representation of each time step from
both directions to be used in further processing. In the output
layer, the combined hidden state ht will be transformed to
produce the output sequence Y = {y1, y2, . . . , yT }, where
each yt represents the output at time step t:

yt = f(ht), (4)

where f refers to a transformation, such as a dense layer,
that projects ht to the output space. For anomaly detection,
this output yt may represent the reconstructed form of xt,
which will be compared to the original input to compute
reconstruction errors. For each time step t, the reconstruction
error is calculated as the difference between the original input
xt and the reconstructed output yt:

Errort = ∥xt − yt∥2. (5)

The reconstruction error Errort is used to measure how the
Bi-LSTM model captures the expected patterns in healthcare
data accurately. Higher reconstruction errors indicate potential
anomalies.

B. DNN Classifier

The DNN classifier is employed in our proposal as essntial
component used for adaptive anomaly detection, where it an-
alyzes the reconstruction errors produced by Bi-LSTM model
and classifies them into anomaly scores as depicted in Fig. 6.
This helps to identify potential poisoning attacks or abnormal
behavior in the local devices data and excluding the malicious
clients from any further participations in the federated learning
process.
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Fig. 6: DNN Classifier

Since healthcare data has complex patterns and each local
device has different distribution patterns, the DNN classifier
has the ability to capture such client-specific patterns within re-
construction errors using multiple hidden layers, where normal
and anomalous variations can be distinguished. This is because
the DNN is trained on reconstruction errors of individual client
data, which adapts the model to specific properties of the local
device, helping handle non-IID data in federated learning, and
reducing false positives and negatives in anomaly detection.

Each reconstruction error x̂ of a sequence is processed by
the DNN classifier to produce anomaly scores O(x̂) as shown
in Fig. 6. Each error determines the deviation between the

original input sequence x and its reconstructed error x̃, which
is computed using the Mean Squared Error (MSE):

x̂ =
1

m

m∑
i=1

(xi − x̃i)
2,

where m indicates the number of features in each sequence.
The error value is input through the input layer, then is passed
through hidden layers, where a non-linear ReLU activation
function is applied by each layer Hj to capture and refine the
input features. In each layer, the ReLU activation is defined
as:

hj = max(0,Wjhj−1 + bj),

where Wj and bj indicate the weights and biases for layer
j, respectively. Through the output layer, a single anomaly
score is produced for each sequence, represented by O(x̂),
which indicates the anomalous nature of each sequence. The
Sigmoid activation function is used to compute the anomaly
score as follows:

O(x̂) = σ(Wohn + bo) =
1

1 + e−(Wohn+bo)
,

where Wo and bo indicate the weights and bias of the output
layer, and hn represents the output from the last hidden layer.
The output O(x̂) is interpreted as a binary classification:
O(x̂) ≈ 0 for normal sequences, and O(x̂) ≈ 1 for anomalous
sequences.

VI. DATASET AND DATA PROCESSING

A. Dataset Description

In our proposal FedSecure, we utilized the MIMIC-III
dataset which is widely used critical care units database. For
privacy, the database contains de-identified health-related data
for thousands of patients. It provides different vital signs and
lab measurements recorded at regular interval times, which
is essential for implementing anomaly detection in Internet
of Medical Things (IoMT) context. The primary goal of
using such dataset is to simulate the realistic conditions of
comprehensive healthcare data which reflects the variability
in real-world IoMT systems. We extracted continous time
series data from five patients containing 50,401 instances to
manage the extensive dataset and to capture diverse patient
characteristics while maintaining computational time of our
experiment.

B. Data Preprocessing

Since the healthcare data is non-IID where each patient
may have different distribution from other ptients due to
various factors such as, age, current body energy, and medical
conditions. As a result, to maintain the individual charac-
teristics of health data in IoMT environment and to support
the requirements of federated learning where each individual
patient operates independently, each patient’s data is pre-
processed separately. The features extracted and utilized in
our experiments include heart rate and respiratory rate, both
are recorded at 1 minute interval. New temporal features
were extracted from the timestamp, such as hour, day, and



weekday. Each local device in our implementation of federated
learning is related to unique patient in the dataset, where all
data preprocessing steps are performed based on the IoMT
requirements to simulate a real-world patient monitoring.

VII. TRAINING PROCESS AND MODEL EVALUATION
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Fig. 7: Training Process of Bi-LSTM on Overlapping Se-
quences.

A. Training Process

Once data is preprocessed, each patient data is prepared
for Bi-LSTM training by reshaping the data into overlapping
sequences with specific length n as illustrated in Fig. 7.
where each sequence includes a set of feature vectors, Si =
{x1, x2, . . . , xn}, where each xj is related to a specific data
point within the sequence. Using such overlapping sequences,
the model can capture and recognize transitions in patterns
over time. Once data is reshaped, each patient’s sequences are
input into the Bi-LSTM model for training. Then, these se-
quences are processed by the model in a bidirectional manner
to analyze both past and future contexts. During the training
process, a reconstruction error is calculated by the model for
each sequence as Ei = {e1, e2, . . . , en} for each patient i,
used as a measure of the model’s ability in reconstructing
normal patterns. Finally, the reconstruction errors for each
patient are analyzed to establish anomaly detection thresholds.
Performing individualized training and error analysis enables
the model to capture patient-specific patterns and enhances
personalized anomaly detection in federated learning.

In training DNN classifier, to avoid potential bias toward
normal patterns and enables the DNN to reliably detect anoma-
lous sequences, we ensured that training reconstruction errors
have sufficient sequence anomalies. Based on the distirbution
of training reconstruction errors, we applied patient-specific
patterns threshold to reflect the characteristics of each patient
rather than using a global threshold for all patients. Using
such threshold, the false positives or negatives will be reduced,

which might be increased if the variations of each patient
not considered. Threshold is set by integrating the statistical
(mean and standard deviation) and percentile-based thresholds.
By this combination, the sensitivity of detecting sequence
anomalies and avoiding false positives from slight variations
in normal data is balanced. In this approach, threshold can
be adapted to the normal fluctuations for of each patient
and avoiding normal variations to be incorrectly classified as
anomalies. The threshold defines the boundary based on the
expected distribution of reconstruction errors. The errors that
exceed threhsold are considered as anomalies. This provides a
flexible adjustements without changing the true anomaly rate.
When the threshold is set carefully, the unexpected deviations
will be isolated.

B. Model Evaluation

1) Bi-LSTM Model Evaluation: The performance of Bi-
LSTM and DNN classifier models is examined within several
several metrics and visualizations. Fig. 8. indicates the density
of reconstruction errors for training dataset which shows a high
concentration of low error values. This confirm that Bi-LSTM
model was trained on mostly clean data. In addition, the low
errors indicates that the model was able to capture normal pat-
terns, which is very important to distinguish between normal
and abnormal behavior.
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Fig. 8: Bi-LSTM Evaluation

The progression of training and validation losses are de-
picted in Fig. 8 (b). The initial sharp drop indicates the
fast learning, where the Bi-LSTM model reconstruct normal
sequences quickly with low errors. At training progresses,
both losses converge towards each other and stabilize at
low values over 31 epochs. This indicates that the model is



well-generalized with no overfitting. The Bi-LSTM accuracy
is tracked as shown in, Fig. 8 (c). The training accuracy
stabilizing at 95.0%, while the validation accuracy reaching
95.4%. This indicates the consistent learning of the model,
where the close alignment between training and validation
accuracy indicates that the model is generalized well to new
data, which is important factor for anomaly detection in a
federated IoMT environment.

Finally, the ability of the reference model for reconstructing
temporal sequences is shown in Fig. 8 (d), which illustrates a
sample of the actual and predicted values for the test data.
The close alighment between the actual and reconstructed
sequences, especially the signaficant trends and fluctuations
shows theat the model effectively can retain the tempo-
ral dependencies within sequences which is essntial feature
for identifying the deviations from learned normal patterns.
Consequently, the success of the reference model in recon-
structing expected sequences patterns indicates that anomalies
represented by larger reconstruction errors can be detected
reliably. This enhances the proposed FedSecure’s ability to
mitigate poisoning attacks effectively in a federated learning
environment.

2) DNN CLassifier Evaluation: In evaluating the DNN
classifier, the model shown high accuracy and reliability in
distinguishing between normal and anomaly sequences as
depicted in confusion matrix, ROC curve, and cross-validation
metrics. The Confusion Matrix shown in Fig. 9 (a) shows
the ability of the model classification and performance, where
there are 4477 true negatives, 264 true positives, with low
error rates of misclassification. The ROC curve, shown in
Fig. 9 (b), with an AUC of 0.99, demonstrates the ability of the
DNN classifier for distinguash between normal and anomaly
sequences using different thresholds specified based on the
distribution of reconstruction errors for each patient.
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Fig. 9: DNN Classifier Evaluation

Fold Train Acc. Train Loss Val Acc. Val Loss

1 0.9953 0.0118 0.9998 0.0065
2 0.9972 0.0070 0.9996 0.0013
3 0.9969 0.0088 0.9993 0.0034
4 0.9982 0.0061 0.9993 0.0038
5 0.9971 0.0067 0.9996 0.0018

TABLE I: Cross-validation results for the DNN Classifier.

To ensure the robustness and generalization performance of
the DNN classifer, it was evaluated using a five-fold cross-

validation. The model achieved consistently high train and
validation accuracy across all folds as shown in Table I. The
train accuracy ranged from 99.53% to 99.71%, while the vali-
dation accuracy ranged from 99.98% to 99.96%. This indicates
that the model effectively generalizes to unseen data. The low
losses of train and validation in each fold indicates that the
pattern of reconstruction errors were effectively captured by
the model without overfitting.

Overall, these results indicate that the DNN classifier can
make accurate predictions even with threshold change, which
reflects the effectiveness of the proposed FedSecure frame-
work in detecting anomalies and malicious behavior within
the IoMT environment in federated learning. This approach
mitigates poisoning attacks by reliably excluding poisoned
data early-stage in the federated learning process, achieving
high reliability with minimal communication overhead.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present and analyze our experimental
results and highlight the impact of various poisoning attacks
on local and global models. The results are compared against
the baseline and our proposed FedSecure approach. These
experiments were implemented using Python programming
language and TensorFlow for deep learning model, and were
conducted on a MacBook Pro.

As shown in Table II, we conducted six distinct experi-
mental runs for evaluating the impact of various poisoning
attacks and the performance of our proposed FedSecure. For
consistent comparison, each run has 30 iterations with a max-
imum of n=5 local devices except run 6 where the isolation
mechanism in our FedSecure was activated and the poisoned
device was successfully detected and isolated, reflecting the
effectiveness of our proposal in mitigating poisoning attacks
within the federated learning environment for non-IID data in
IoMT.

TABLE II: Summary of Experimental Runs

Run Description

Run 1 Baseline (no poisoning) to establish standard model
performance.

Run 2 Data Poisoning Attack 1, introducing variability in
data patterns.

Run 3 Data Poisoning Attack 2, applying pattern scaling
to alter data distributions.

Run 4 Backdoor Attack 1, using gradual pattern injection
to mimic slight malicious behavior.

Run 5 Backdoor Attack 2, introducing repeated patterns to
create a malicious signal.

Run 6 FedSecure, demonstrating our proposed defense
mechanism.

A. Local Model

For local models, the comparision between Dev2 (Poisoned
Device) and Dev4 (un-poisoned) provides how they impacted
by different poisoning scenarios. For Dev2, the baseline in Run
1 shows a gradual reduction in loss and regular improvement in
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Fig. 10: Loss and Accuracy per Local Device and Run.

accuracy over iterations. In poisoned runs (Runs 2–5), shows
slower loss and accuracy reduction, especialy in Run3 and
Run 4. This indicates that poisoning attacks prevent Dev2 from
gaining similar level of performance, where Run 3 shows most
impact. In contrast, FedSecure in Run 6 shows stable loss and
accurate trends which are close to the baseline. This means
that FedSecure successfully mitigated poisoning effects.

For Dev2, in Run 1 (Baseline with no poisoning), the local
model shows expected behavior as it is trained on clean data
over 30 iterations, with reasonable continuous improvements
in both loss and accuracy which indicates that the local model
learning effectively. In Run 2 (Data Poisoning1), similar to
Run1 where the loss and accuracy improved over iterations,
but with a noticeable increase in loss and slower accuracy
increasing copared to the baseline. This indicates that poisoned
data degraded the model ability to reach the baseline. The
performance of local model in Run 3 (Data Poisoning2) hs
more sever affect. Comparing to the baseline, the loss is ex-
tremely high where accuracy remains lower than the majority
of training process. This indicates that the Data Poisoning2 has
more affect the learning process of the model compared to the
Data Poisoning1, where the model struggles to make expected
predictions even with 30 iterations. The performance of local
model is impacted in Run 4 (Backdoor Attack1) but less than
in Data Poisoning2. Despite this, the model loss decreses over
time and the accuracy improved gradually indecating that the
model recovers the initial disruption caused by the backdoor
attack. Although the model still able to improve predictions
over iterations similar to Run 2 with data poisoning, the
accuracy still lower than the baseline, which indicates that
backdoor attack has continuous affect on the model. In Run 5
where Backdoor Attack2 is applied, the poisoning is slightly
more sever. The high loss and low accuracy in the initial
iterations are improved over time. Similar to Run 4 where
the model recovers the disruption, but with longer time fro
accuracy to be in a reasonable value. However, the accuracy
still lower than the baseline performance, which indicates that
Backdoor Attack2 is more adverse than Backdoor Attack1.

For Dev4, in Run1 where no poisoning is applied, the local
model shows gradual improvement 30 iterations. The loss and
accuracy showing in the figure incdicate that the local model
is successfully learns and capturing important patterns. In Run
2 (Data Poisoning1), a slight reduction in model performance
is observed, which is expected as the model was injected with

poisoned data. Although the model loss decreased gradually,
the accuracy lower than the baseline. Run 3 (Data Poisoning2)
shows slower loss and accuracy reduction which indicates
that this type of poisoning has more persistent negative effect
on the model and harder to overcome than the first type.
Run 4 (Backdoor Attack1) is similar to previous runs, but
with notable fluctuations. The inintial loss is higher than Data
Poisoning2 which indicates that the model learning ability is
disrupted significantly by backdoor attack in the first iterations.
Although the model recovers this in later iterations as observed
in previous poisoning atatcks, the accuracy remains lower than
the baseline. In Run 5, the local modal experienced with
another type of backdoor attack, which cause different pattern.
The initial accuracy much lower in this run, which indicates
that this type of attack has more impact on the model ability to
converge. The local model loss starts at a relatively high value,
but it decreases over iterations. However, over the 30 iterations,
the accuracy still lower than the baseline. The result indicates
that backdoor attack impacted the model performance more
than data poisoning scenarios. Finally, in Run 6, where the
FedSecure is applied, we observe an interesting trend. At the
initial iterations, local model loss and accuracy are similar
of what observed in previous runs, but hte model exhibits a
stronger improvement over later iterations exceeding all previ-
ous runs including the baseline. This indicates that FedSecure
improved the model performance effectively, and successfully
identifying and mitigating the effects of malicious data.

B. Global Model

The global model loss and accuracy depicted in Fig. il-
lustrates the model robustness against poisoning attacks in
different scenarios (Runs 1-5) and the FedSecure effectiveness
in (Run 6). In the absence of poisoning (baseline- Run 1), the
global model shows a typical behavior with stable, consistent
improvement in both loss and accuracy over 30 iterations.
The smooth reduction in loss and steady increase in accuracy
reflect the generalization and ability of the model for making
accurate predictions after each round. Runs 2 and 3 introduce
data poisoning which causes a slower convergence and larger
fluctuations as shown in Fig. where the initial iterations show
higher losses and lower accuracies compared to the baseline.
This indicates that poisoning degrades the learning rate and
accuracy of the global model. Especially in the Run 3, where
the global model struggling to reach the baseline performance
levels and reaching a steady state earlier than Run 1. This
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Fig. 11: Anomaly Scores and errors distribution of Malicious device (Dev2).

is might be due to the injected data anomalies. In (Runs 4
and 5), backdoor attacks are introduced, which cause more
fluctuations with irregular patterns both in loss and accuracy
similar to the data poisoning runs in. The initial loss in Run
5 slightly lower than Run4, but it increased over time. This
reflect the negative impact of Backdoor Attack2 where it has
a more persistent effect compared to Backdoor Attack1. The
accuracy of both Run4 and Run5 improves over iterations, but
still lower than the baseline performance. This pattern with the
higher loss and a slower accuracy improvement indicates that
backdoor attacks affect the global model, which could be due
to the targeted nature of these attacks. In Run 6 (FedSecure),
the global model shows a recovery similar to the baseline,
which indicates the effectiveness of the FedSecure approach.
The model loss shown lower than runs with poisoning ir back-
door attacks, where the accuracy increases steadily. However,
in some cases, poisoned runs may show higher short-term ac-
curacy by incorporating all data without filtering the malicious
data and less data used in aggregation. Although this approach
compromises long-term accuracy and increases vulnerability to
malicious data, FedSecure isolates malicious contributions in
early-stage and mitigates the poisoning attacks ot remain the
global model resilient against poisoning attacks in the long
term. However, ahough the accuracy is still slightly lower
than the baseline. The performance of global model in Run
6 is notably better than in Run 3 (Data Poisoning2) and Run
5 (Backdoor Attack2) which indicates that the FedSecure’s
adaptive anomaly detection successfully reduced the impact
of adversarial attacks.

C. Anomaly Scores Distribution

For anomaly scores distribution, in Run 1(No Poisoning -
Baseline), the anomaly scores of dev2 are concentrated around
very low values with slight deviations, where all the scores fall
below the set threshold of 0.990, indicating that the data was
identified as normal by the model. In Run 2 - Data Poisoning1,
the threshold for anomaly detection is set at 0.800. The
anomaly scores has a more spread-out distribution compared
to Run 1. Although majority of the data falls in the normal

range, this run shows increased variability in anomaly scores,
where they scattered across multiple bins due to the poisoned
data which contributes to outliers which being flagged as
anomalies byt he FedSecure. This aligns with the observed
loss and accuracy in Run 2, where the accuracy improved
over iterations. In Run 3, the anomaly scores distribution is
significantly higher compared to the previous run, where the
most data fall in high range. This indicates that the poisoning
has affected the data, which makes the most data to be flagged
as anomalies. The accuracy of the model 44.20% at the end
of iterations confirms that this type of strong poisoning has
reduced the model performance, where it loses the ability
to generalize to normal data with this posioning. In Run 4,
the Backdoor Attack1, balaned the distribution of anomaly
scores. The FedSecure detects some anomalies, at higher bins,
but with less scores than in Run 3. This reflect the accuracy
fo the global model where it is imperoved steadily in this
run, which indicates that this type of attack caused moderate
disruption. The result of anomaly scores shoes that backdoor
data manipulations leading to partial detection of malicious.
Although the model can resist against backdoor poisoning, but
still can not overcome the attack. Run 5 - Backdoor Attack2,
the a stronger backdoor effect can be noted, where the anomaly
scores distribution fall above the specified adaptive threshold.
This indicates that this type of attack has more persistent effect
on the data. However, the accuracy of the global model in
this run shows that the model has a slightly better recovery
than in Run 4 which indicates that this type poisoning can
be mitigated, but it might affect the model performance in
long-term.

D. Reconstruction Errors Distribution

The reconstruction errors in Run 1 - No Poisoning (Base-
line) has low values with few higher reconstruction errors
due to natural variability. This reflects that model sucessfully
captured the normal pattern and able to reconstruct the normal
data in the absence of poisoning. The error distributions in the
Run 2 - Data Poisoning1 aligns with the increased anomaly
scores and matches the global model performance in Run 2.



This indicates that the poisoning has affected reconstruction.
Run 3 - Data Poisoning2, the incresing in reconstruction
error distribution can be noted. This consistent with the high
anomaly scores, which indicates that the model struggling to
reconstruct data correctly due to the aggressive poisoning. In
addition, the accuracy of the model in this run shows this
consclusion, where the model could not adapt well to this type
of poisoning, leading to higher errors. Also, the reconstruction
errors in Run 4 and Run 5 - Backdoor Attacks are increased,
but with less drastic compared to Run 3. As the errors are
gradually increased, the model still able to reconstruct much of
data but disrupted by the backdoor patterns. The improvement
of accuracy in Run 4 and Run 5 reflects this result.

IX. CONCLUSION AND FUTE WORK

The FedSecure framework demonstrates how adaptive dis-
tributed anomaly detection contributes to mitigate poisoning
attacks in federated IoMT environments against complex at-
tacks using a reference model (Bi-LSTM) autoencoder and
DNN classifier. The experimental results on real-world data
(MIMIC III) shows that FedSecure approach can identify
poisoning patterns and mantain the model integrity and accu-
racy. The FedSecure increases the communication efficiency
and scalability of federated learning, where the malicious
clients are isolated in early stage of federated learning process.
Therefore, only benign updates are sent to the central server.
Although FedSecure robustness against multiple poisoning at-
tacks, some other types of attack will be included in our future
work, such as label-flipping and model inversion attacks. In
addition, our future work will include exploring lightweight
models to enhance edge-computing optimizations.
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