
iPUF: A Novel Security-by-Design Paradigm to
Mitigate Data Manipulation and External Attacks in

Cyber-Physical Systems

Seema G. Aarella Sameer Agarwal
Dept. of Computer Science and Engineering Texas Academy of Math and Science

University of North Texas, USA University of North Texas, USA
Email: seemaaarella@my.unt.edu Email: sameeragarwal@my.unt.edu

Saraju P. Mohanty Elias Kougianos
Dept. of Computer Science and Engineering Dept. of Electrical Engineering

University of North Texas, USA University of North Texas, USA
Email: saraju.mohanty@unt.edu Email: elias.kougianos@unt.edu

Vasanth Iyer Bibhudutta Rout
Computer Science and Digital Technologies Dept. of Physics

Grambling State University, USA University of North Texas, USA
Email: iyerv@gram.edu Email: bibhudutta.rout@unt.edu

Abstract—Fault Injection attack is a type of side-channel
attack on the Physical Unclonable Function (PUF) module that
can induce faults in the PUF response by manipulating the
PUF circuit behavior through voltage glitches, laser attacks,
temperature manipulations, or any other attacks potentially
leading to information loss or security system failure. This type
of attack exposes the physical characteristics of PUFs that can
be analyzed to predict or compromise the unique challenge-
response pairs (CRPs) reducing the security and reliability of
the PUF. Mitigation strategies against such attacks typically
include adding noise to the PUF output, using error-correcting
codes, or enhanced cryptographic protocols that obscure physical
side-channel attacks. In this research, we propose a Generative
Adversarial Network (GAN) based security model, that monitors
the PUF behavior and detects the variations in PUF response.
The model can detect glitches in the PUF response and generate
alerts to take mitigation measures.

Index Terms—Security-by-Design (SbD), Physical Unclonable
Function (PUF), Generative Adverserial Networks (GAN), Edge
Computing, Cybersecurity, Data Security, Reliability

I. INTRODUCTION

Cyber-Physical Systems (CPS) are widely employed in
Internet-of-Things (IoT) applications, they are increasingly
becoming vulnerable to data manipulation and external attacks,
particularly False data injection (FDI) attacks, which can
compromise the integrity of the CPS as they can target the
maximum possible locations in CPS at a time [1]. PUF is a
hardware security primitive used for device and data secuirty
in CPS applications. FDI attacks can target PUF circuits at
any stage manipulating the PUF response that will result in
security system failure due to errors in the PUF response.

PUFs are a form of security technology created utilizing
the variations in fabrication process of a device, they can be
used for authentication and identification. This is because they
can generate unique and secret keys through their response
[2]. Although PUFs cannot be cloned, the distribution of
challenges and responses can be identified by machine learning
models given certain keys. Deep learning models can begin
to predict responses given certain keys. Additionally, another
way that PUFs can be attacked is through glitches that cause
bitflips. One bitflip can throw off a response and harm the
authentication capability of a PUF device [3].

A
pp

lic
at

io
ns

 U
si

ng
 P

U
F-

ba
se

d
Se

cu
rit

y

Secure
 Authentication

Smart Healthcare

Smart Transport

Smart Home

ML Model

1010111011…
1001010111…
0111011101…
10011…

IoT Devices

Attack /Threat

Detect

Alert/Warning

Mitigation
System

PUF Data

Security
System

Fig. 1. Security using Machine Learning for PUF based applications

As shown in Fig. 1, the machine-learning model can be
employed to detect an attack or threat and mitigate the damage

https://orcid.org/0009-0006-8807-3352
https://orcid.org/0009-0005-0610-8375
https://orcid.org/0000-0003-2959-6541
https://orcid.org/0000-0002-1616-7628
https://orcid.org/0000-000201909-4276
https://orcid.org/0000-0002-7748-1469

to keep the IoT devices secure. The PUF data is fed into the
machine learning model which looks for patterns or potential
attacks in case it needs to trigger an alert.

We propose using GANs to address these issues. GANs,
consisting of a generator and a discriminator trained alter-
nately, can distinguish real from fake PUF responses. This
enhances security for edge devices and protects valuable
information.

The rest of the paper is organized as follows: Section II
discusses related research of PUFs and GANs. Section III
discusses the problems addresses and proposed solutions along
with specific contributions of the current research. Section IV
discusses the proposed framework while Section V includes
the experimental setup along with discussions on results, and
Section VI concludes the research.

II. RELATED PRIOR RESEARCH

The security of PUF-based systems has been the subject
of extensive research, revealing various vulnerabilities and
potential countermeasures. The susceptibility of Arbiter PUFs
(APUFs) and their variants, such as XOR PUFs, to machine
learning attacks has been well-documented [4], [5]. These at-
tacks exploit the inherent predictability of PUF responses, po-
tentially compromising the security of authentication and key
generation mechanisms. The research proposes modifications
to PUF designs, such as the Double Arbiter PUF (DAPUF)
[6], and explores the use of helper data and error correction
techniques to enhance their resilience against modeling attacks
[7].

Fault injection attacks pose another significant threat to
PUF-based systems. These attacks exploit vulnerabilities in
the physical implementation of PUFs, potentially leading to
unauthorized access and data manipulation. Various counter-
measures, including the use of ring oscillator (RO) PUFs
as fault injection detectors are proposed in [13], [14]. The
sensitivity of RO PUFs to voltage and clock manipulation
allows them to serve as effective sensors for detecting and
mitigating such attacks.

The relationship between machine learning and PUF se-
curity is dual: ML models can both attack and enhance
PUFs. Research [15] demonstrates adversarial neural networks
improving error-correcting codes, potentially strengthening
PUF resilience. Additionally, [16] evaluates PUF security
assumptions, clarifying myths and limitations, emphasizing the
need for rigorous testing in security-critical applications.

Additionally, other methods of strengthening PUFs involve
Error Correction with Multiple CRPs or ECMC, as shown in
the work [17]. This method involves splitting up the bits of a
response into the number of CRPs.

PUFs are being integrated into edge computing for se-
cure authentication in IoT. Research focuses on robust PUF-
based protocols and countermeasures against attacks to protect
resource-constrained devices. Table I lists state-of-the-art stud-
ies and applications.

TABLE I
COMPARATIVE TABLE FOR STATE-OF-THE-ART LITERATURE

Research Year ML Algorithm Application

Chen et. al [8] 2018 Fault Injection
Module

Increase PUF At-
tack resistance

Wen et. al [9] 2017 Fuzzy Extractor PUF reliability
Long et. al [10] 2019 Double PUF-

based Model
PUF Authentica-
tion System

Yoon et. al [11] 2020 Generative
Adversarial
Network

PPUF testing and
restructuring

Aarella et. al [12] 2024 K-Mer Sequence PUF Bit Error
Correction

Current Work
(GAN-Fortified
PUF, iPUF)

2024 Generative
Adversarial
Network

PUF Bitflip de-
tection

III. RESEARCH CONTRIBUTIONS

A. Problems Addressed

There are many ways in which the PUF system can be
attacked or manipulated, either by external attackers or by
environmental variations, both accounting for instability in
PUF response and eventual failure of the PUF-based systems
like authentication or authorization.

B. Proposed Solutions

This research proposes the use of GANs for detecting the
errors in the PUF response, the research involves studying the
properties GANs concerning n-bit binary PUF response. The
GANs generators are tuned to generate PUF responses that
are similar to the original reponse and the discriminator can
be fine tuned to identify the real from the error response.

C. Novel Contributions of the Current Research

This research proposes a novel GAN-based approach to
detect threats to a PUF operation, that is primarily based on
binary sequence of n-bit PUF response data.

• PUF response data preparation, analysis and Preprocess-
ing, data organization and dataset generation suitable for
GAN training

• The Application of GANs for detecting errors in PUF
responses is novel compared to traditional statistical
methods

• Machine Learning for improving error detection enhanc-
ing the robustness and security of PUF-based security
applications

• Fine-tuning GAN to handle binary input, testing the
capabilities beyond the usual application domains like
image synthesis

• Attack pattern recognition by training the GAN on real
and synthetic glitch data

IV. THE PROPOSED NOVEL FRAMEWORK - THE IPUF

The research uses PUF 64-bit CRP response from XORAr-
biter PUF [18], the data is preprocessed and labelled. The
unique responses are labled as real, fake response is created
by introducing bitflips randomly along the 64-bit sequence,

and they are labelled as fake. The GAN model is trained to
classify the real and fake responses based on their labels.

The framework using GAN for predicting errors in the
PUF response is shown in Figure 2. The model is trained
on multiple instances of responses to study the variations in
the threshold values that differentiate the original response
from the corrupted response. The threshold value is used as
a reference for identifying the real and fake data. Once the
model is trained, it can predict the threshold value of the new
data based on which it can make accurate decisions. If the
threshold value of new data is the same as the ’t’, it will be
tagged as a real response, and a new value that is greater than
the value ’t’ is flagged as an error, and the system is directed
for further mitigation.

1011011011…
PUF IoT

Device Activation
Response

Data

GAN

Error No Error

Mitigation System Correct Response

Verification

> t = t

10101011
11100111
10111…

Threshold
Value ‘t’

Fig. 2. Proposed GAN framework for error detection.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The dataset consists of 10K data of repeated responses from
1000 unique challenges. The responses are grouped into 100
unique responses for each challenge, with some groups having
glitched data. The GAN model setup for error detection in PUF
response data is shown in Figure 3. The necessary libraries
are imported for defining GAN, and Keras to build models
and layers. The parameters are adjusted to suitable values,
batch size is set to 64, latent dim of the noise generator is set
to 100. The dataset is preprocessed, and columns and labels are
added. The real data is labeled as ’1’ and fake data is labeled as
’0’. The real data batch() and generator(noise) functions are
used to select random batches from real samples and generate
random noise.

The generator model takes noise as input and outputs a
64-dimensional binary-like vector like the shape of the PUF
response. It includes dense layers with LeakyReLu activations
and BatchNormalization layers to stabilize the training and
prevent mode collapse. The output layer uses sigmoid function
generating values between 0 and 1.

Initialize Parameters

Prepare Data – convert binary strings,
shape the data

Helper Functions – fetch real data,
create random noise

Define Gradient Penalty and Loss Functions

Build Generator

Build Discriminator

Initialize Training Variables

Training Loop

Fig. 3. Training process of the GAN model

The discriminator model takes 64-dimensional binary vec-
tors as input and outputs a single probability, sigmoid acti-
vation is used in the output layer. feature matching loss() is
used to calculate the mean squared error between real and
fake features, making the generator produce similar data that
is close to real data.

The GAN generator and discriminator training steps are
shown in Algorithm 1. The gradient penalty tuning parameter
λgp is adjusted to be close to 5 to avoid over-regularizing the
discriminator; any lower value will make the model unstable.
Noise strength is adjusted to a value close to 0.1 after testing
the over various values. These values are adjusted accordingly
during testing to prevent the discriminator from overfitting for
various datasets.

B. Results and Analysis

The discriminator output shown in Figure 4 ranges between
0 and 1, where outputs close to 1 likely represent real data,
and those close to 0 indicate fake data for a given set of
responses. Analyzing the real data distribution shows that it
sharply peaked at 1, meaning the discriminator is confident
that real data samples are indeed real. The distribution for
fake data is spread mostly between 0.0 and 0.7, with a peak
between 0.2 and 0.4, suggesting the discriminator correctly
classifies most fake data as fake, with outputs concentrated in
the lower range.

The trained model is confidently detecting the real and fake
labels with a small outliers as shown by the confusion matrix
in Figure 5.

The Receiver Operating Characteristic (ROC) curve shown
in Figure 6 shows the trade-off between the True Positive Rate
(TPR) and False Positive Rate (FPR) for various threshold

Algorithm 1: GAN Training Loop
1: Input: Number of epochs E = 1000, Batch size B,

Gradient penalty coefficient λgp, Label smoothing value
s

2: for epoch = 1 to E do
3: Step 1: Train Discriminator
4: Fetch real samples:

real batch← real data batch()
5: Generate noise: noise ∼ N (0, 1)
6: Create fake samples:

fake batch← generator(noise)
7: Add noise regularization to real and fake samples
8: Apply label smoothing:

real labels← s · real labels,
fake labels← (1− s) · fake labels

9: Train discriminator on real and fake samples
10: Calculate gradient penalty:

gp← λgp · gradient penalty(real batch, fake batch)
11: Update discriminator loss: d loss← d loss + gp
12: Step 2: Train Generator
13: Generate fake samples:

fake batch← generator(noise)
14: Calculate feature matching loss between real and

fake samples
15: Use tf.GradientTape to compute gradients for

generator
16: Update generator weights
17: end for

Distribution of Discriminator Outputs

Fr
eq

ue
nc

y

Discriminator Output

Fig. 4. The plot for the discriminator output

settings of the classifier. The ROC curve is very close to
the top-left corner, showing that the model achieves a high
true positive rate with a very low false positive rate. This
steep curve indicates that the model can separate real and fake
samples effectively with little error. The Area Under the Curve
(AUC) score of 1 represents a perfect classifier, while an AUC
of 0.5 represents random guessing. In this case, the AUC is
0.99, which is very close to 1.

The discriminator and generator losses over 1000 epochs
are shown in Figure 7. The discriminator loss starts at a
lower value and eventually stabilizes at 3.0, indicating that
the discriminator is performing well and likely reached an
optimal value at this point the discriminator is successfully

Confusion Matrix

Tr
ue

 L
ab

el

Predicted Label

Fig. 5. Confusion matrix

Receiver Operating Characteristic (ROC) Curve

Tr
ue

 P
os

iti
ve

 R
at

e
False Positive Rate

Fig. 6. The plot for ROC

distinguishing between real and fake data with high confi-
dence. The stable value shows that the discriminator is not
overly confident.

The generator loss remains constantly low after initially
starting at a high value and eventually decreasing, producing
samples that are quite realistic and harder for the discriminator
to distinguish.

It is to be noted that the dataset used has few bit flips in
the range of 1-4 in each binary sequence. However a more
degraded dataset will generate different results from the GAN.
This model is quite effective in detecting minor flips upto 1
bit.

The prediction results are shown in Figure 8, where the
predictions are made based on the threshold value from the
discriminator. The model is efficient in generating threshold
values that are unique for real and fake data, as displayed in
the results.

The comparative results from various models studied in
related research are shown in Table II.

VI. CONCLUSION

This research demonstrates a robust GAN training approach,
applying advanced techniques like gradient penalty, noise
regularization, and feature matching tailored for binary data.
These methods help stabilize the training and improve the

TABLE II
COMPARATIVE TABLE FOR STATE-OF-THE-ART LITERATURE

Research Year Algorithm Accuracy

Chen et. al [8] 2018 Fault Injection
Module

65.10

Wen et. al [9] 2017 Fuzzy Extractor 98.00
Long et. al [10] 2019 Double PUF-based

Model
N/A

Yoon et. al [11] 2020 Generative Adver-
sarial Network

66.00

Aarella et. al [12] 2024 K-Mer Sequence 99.74
Current Work
(iPUF)

2024 Generative Adver-
sarial Network

99.00

Discriminator Loss Vs Generator Loss

Lo
ss

Epoch

Fig. 7. Evaluation of the discriminator and generator loss

Fig. 8. Prediction results with corresponding threshold Values

generator’s ability to mimic real data distribution as shown
in the results.

The threshold value is the key to making better predictions.
The current model is 99% accurate in detecting fake responses,
a feedback system-based model can further enhance the per-
formance by updating the threshold values for a variety of
data, and a continuous learning GAN can be implemented to
update and detect the latest threats using new data. Overall,
This GAN model works as a robust framework for gener-
ating realistic samples, providing a valuable foundation for
applications in anomaly detection and hardware security in
PUF-based systems. The model needs testing in real-time on
features like voltage variations or current variations for further
development.

As a future research, a broader dataset can be used to study
the behavior of the GAN model to suit the needs of security

and data analysis involving binary sequences. They need to be
optimized for low-power edge devices and tested for practical
applications, and they can be employed in deep-fake image
detection. GANs can also be trained to generate strong PUFs
to enhance the reliability of the system.

REFERENCES

[1] S. Padhan and A. K. Turuk, “Design of False Data Injection Attacks and
Their Detection and Mitigation in Cyber-Physical Systems,” in Proc.
27th International Conference on Advanced Computing and Communi-
cations (ADCOM 2022), 2023, pp. 41–45.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. 9th ACM Conference on Computer and
Communications Security, 2002, pp. 148–160.

[3] J. Ruchti, M. Gruber, and M. Pehl, “When the decoder has to look twice:
Glitching a puf error correction,” Cryptology ePrint Archive, Paper
2021/958, 2021, https://eprint.iacr.org/2021/958. [Online]. Available:
https://eprint.iacr.org/2021/958

[4] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri, “A Machine Learning-
Based Security Vulnerability Study on XOR PUFs for Resource-
Constraint Internet of Things,” in Proc. IEEE International Congress
on Internet of Things (ICIOT), 2018, pp. 49–56.

[5] H. T. Nguyen, S. Bottone, K. T. Kim, M. Chiang, and H. V. Poor,
“Adversarial Neural Networks for Error Correcting Codes,” in Proc.
IEEE Global Communications Conference (GLOBECOM), 2021, pp.
01–06.

[6] R. Yashiro, T. Machida, M. Iwamoto, and K. Sakiyama, “Deep-
Learning-Based Security Evaluation on Authentication Systems Using
Arbiter PUF and Its Variants,” vol. 9836, 09 2016, pp. 267–285.

[7] R. Maes and V. van der Leest, “Countering the effects of silicon aging
on SRAM PUFs,” in Proc. IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2014, pp. 148–153.

[8] J. Chen, J. Wen, F. Dan, Z. Li, B. Liu, Y. Xu, S. Chen, and B. Li, “A
Modeling Attack Resistant Scheme Based on Fault Injection,” in Proc.
IEEE 3rd International Conference on Signal and Image Processing
(ICSIP), 2018, pp. 582–585.

[9] Y. Wen and Y. Lao, “Efficient fuzzy extractor implementations for PUF
based authentication,” 10 2017, pp. 119–125.

[10] J. Long, W. Liang, K.-C. Li, D. Zhang, M. Tang, and H. Luo, “PUF-
Based Anonymous Authentication Scheme for Hardware Devices and
IPs in Edge Computing Environment,” IEEE Access, vol. 7, pp. 124 785–
124 796, 2019.

[11] J. Yoon and H. Lee, “PUFGAN: Embracing a Self-Adversarial Agent
for Building a Defensible Edge Security Architecture,” in Proc. IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
2020, pp. 904–913.

[12] S. G. Aarella, V. P. Yanambaka, S. P. Mohanty, and E. Kougianos,
“Fortified-Edge 4.0: A ML-Based Error Correction Framework for
Secure Authentication in Collaborative Edge Computing,” in Proc.
Great Lakes Symposium on VLSI, 2024, p. 639–644. [Online].
Available: https://doi.org/10.1145/3649476.3660384

[13] T. Köylü, L. Garaffa, C. Reinbrecht, M. Zahedi, S. Hamdioui, and
M. Taouil, “Exploiting PUF Variation to Detect Fault Injection Attacks,”
in Proc. 25th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), 2022, pp. 74–79.

[14] S. Tajik, “On the Physical Security of Physically Unclonable Functions,”
01 2019.

[15] G. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” 07 2007, pp. 9–14.

[16] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Verbauwhede,
and C. Wachsmann, “PUFs: Myth, Fact or Busted? A Security Evalu-
ation of Physically Unclonable Functions (PUFs) Cast in Silicon,” in
Proc. Cryptographic Hardware and Embedded Systems – CHES, 2012,
pp. 283–301.

[17] K. Sun, Y. Shen, Y. Lao, Z. Zhang, X. You, and C. Zhang, “A New Error
Correction Scheme for Physical Unclonable Function,” in Proc. IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp.
374–377.

[18] S. G. Aarella, S. P. Mohanty, E. Kougianos, and D. Puthal, “PUF-
based Authentication Scheme for Edge Data Centers in Collaborative
Edge Computing,” in Proc. IEEE International Symposium on Smart
Electronic Systems (iSES), 2022, pp. 433–438.

https://eprint.iacr.org/2021/958
https://eprint.iacr.org/2021/958
https://doi.org/10.1145/3649476.3660384

	Introduction
	Related Prior Research
	Research Contributions
	Problems Addressed
	Proposed Solutions
	Novel Contributions of the Current Research

	The Proposed Novel Framework - The iPUF
	Experimental Results
	Experimental Setup
	Results and Analysis

	Conclusion
	References

