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Abstract— Stress may be defined as the reaction
of the body to regulate itself to changes within the
environment through mental, physical, or emotional
responses. Recurrent episodes of acute stress can
disturb the physical and mental stability of a person.
This subsequently can have a negative effect on work
performance and in the long term can increase the
risk of physiological disorders like hypertension and
psychological illness such as anxiety disorder. Psycho-
logical stress is a growing concern for the worldwide
population across all age groups. A reliable, cost-
efficient, acute stress detection system could enable
its users to better monitor and manage their stress to
mitigate its long-term negative effects. In this article,
we will review and discuss the literature that has
used machine learning based approaches for stress
detection. We will also review the existing solutions
in the literature that have leveraged the concept of
edge computing in providing a potential solution in
real-time monitoring of stress.

I. WHAT IS STRESS?

Stress is defined as the reaction to adverse en-
vironmental situations that challenges the typical
adaptive capability as perceived by an individual
[1]. Although positive stress (eustress) helps the
individual to stay focused to deal with adversi-
ties, negative stress (distress) causes the activation
of the HPA (hypothalamic-pituitary-adrenocortical)
axis. Prolonged activation of the HPA axis may
cause physiological and psychological disorders
[2]. Psychological stress is also found to affect
physiological processes and has a negative effect on
daily work performance and is thought to affect the
national economy [3]. Monitoring negative stress

levels can provide useful information for identi-
fying the stressors and provide an opportunity to
adopt necessary precautions in preventing resulting
disruption.
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Fig. 1: Examples of objective and subjective mea-
sures of stress.

The two distinct effects of negative stress are
defined as: (i) physiological or "objective" stress;
and (ii) psychological stress or the "subjective"
stress also known as the perceived stress. Objective
stress is reflected by the change in physiological
measures such as elevated blood pressure, increased
heart rate, and increased cortisol levels. Subjec-
tive stress is the perception of whether or not a
situation as stressful by an individual. The most
common method of measuring perceived stress is
by employing stress questionnaires like DASS 21
(Depression, Anxiety and Stress Scale - 21 Items),
STAI (State-Trait Anxiety Inventory), and POMS
(Profile of Mood States) (see Figure 1). Two main
physiological measures for stress include: (i) Corti-
sol (stress hormones) and (ii) Physiological signal
measurements like GSR (Galvanic Skin Response),
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ECG (Electrocardiogram), and EEG (Electroen-
cephalogram).

In [4], we have discussed the different physi-
ological measures of stress and the technologies
associated with the measurement of stress metrics.
Further in [5], we have provided an overview
of different sensors and commercially available
devices for measuring stress. In this article, we
will explore the different machine learning based
approaches for stress detection and also study the
solutions presented in the literature for facilitating
the deployment of a stress detection model for real
time monitoring.

II. PHYSIOLOGICAL SIGNALS FOR STRESS

MONITORING

The most common physiological measure for
stress detection is Galvanic Skin Response (GSR).
GSR is related to physiological and psychological
arousal. Arousal in the autonomic nervous system
(ANS) increases the activity of the sweat glands
resulting in increased skin conductance. Figure 2
shows how GSR is related to the activation of
the ANS to aroused state and deactivation from
the stressed state to relaxed state [6]. However,
detecting stressed states is complicated by several
factors influencing the quality of signal, variations
in response, etc. Also, using GSR alone has not
been able to distinguish between stressed and non-
stressed states when attempting to classify stress
in more than two levels. For example, better than
99% accuracy was obtained in [7] by using features
from both Electrodermal Activity (EDA) and Pho-
toplethysmograph (PPG) signals, contrasted with an
82.8% accuracy reported when using only EDA
features [8]. As multi-sensor based approaches
works better than a single sensor, stress monitoring
devices should have multiple sensors embedded in
them to be suitable for more accurate stress detec-
tion. Furthermore, wearable sensor frameworks are
best suited for real-time monitoring as they enhance
convenience and comfort for the user and facilitate
unobtrusive monitoring.

Several prototypes and implementation methods
of wearable frameworks for stress monitoring have
been proposed in the literature. In [9], researchers
have developed a stress monitoring patch that is
capable of capturing skin temperature, skin con-
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Fig. 2: Variation of GSR with mental stress [6].

ductance, and pulse wave signals. In [10], a glove
based sensor to capture EDA signals and pulse wave
signals has been proposed. In [11], a physiological
signal monitoring and communication system were
developed by researchers from MIT Media Lab. A
smart sensor capable of capturing heart rate, skin
conductance and skin temperature was proposed in
[12]. In [13], a stress monitoring system based on
a body sensor network has been designed for an
ambulatory setting.

However, there are also several commercially
available devices and platforms for physiological
signal acquisition and recording. Table I lists some
popular commercially available devices suitable for
data collection and analysis for research in the area
of stress detection.

TABLE I: Popular commercially available devices
for research.

Brand Device Signals RTI Ambulant

Empatica E4 wristband PPG, GSR, HR, Yes Yes
ACC, ST

Garmin Vivosmart HR, HRV, ACC Yes Yes

Zephyr BioHarness 3.0 HR, HRV, GSR, Yes Yes
ACC, ST

iMotions Shimmer 3+ GSR GSR, PPG Yes No

BIOPAC Mobita Wearable ECG, EEG, EGG Yes No
EMG, and EOG

GSR = Galvanic Skin Response, HR = Heart Rate, ACC =
Acceleration, ST = Skin Temperature, HRV = Heart Rate
Variability, PPG = Photoplethysmograph, RTI = Real Time
Implementation

III. MACHINE LEARNING TECHNIQUES FOR

STRESS MONITORING

Features from physiological signals represent the
relationship between these physiological signals
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and corresponding stress levels. These features are
the backbone of any machine learning model based
on which classifications are made. Figure 3 shows
the common features extracted from ECG, GSR,
EEG and Resp (Respiration) signals [14].
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Fig. 3: Common features extracted from ECG,
GSR, Respiration and EEG.

Features from ECG signals typically consist of
the mean heart rate, SDNN (standard deviation of
the R-R peak interval), RMSD (RMS value of the
successive differences between R-R peak intervals),
pNN20 and pNN50 (percentage of the successive
normal sinus R-R intervals which are more than
20ms and 50 ms respectively), HF and LF (high
frequency and low frequency components of R-
R interval) in the range (0.15-0.4 Hz) for high
frequency and (0.04-0.15 Hz) for low frequency
and the LF/HF ratio. Finally, SD1 and SD2 are the
crosswise and lengthwise standard deviations of the
Poincaré plots.

GSR is characterized by two components: a slow
changing tonic component called Skin Conductance
Level (SCL); and a fast-changing phasic component
named the Skin Conductance Response (SCR). Fea-
tures like SCL, duration and magnitude of SCR and
SCRR (Skin Conductance Response Rate), and the
time duration during which the influence of stim-
ulus persists also called OPD (Ohmic Perturbation
Duration) constitute the set of features commonly
studied in the context of stress detection.

Mean respiration frequency and the spectral
power density of the signal in four different energy
bands (0-0.1 Hz), (0.1-0.2 Hz), (0.2-0.3 Hz), and
(0.3-0.4 Hz) denoted by EB1, EB2, EB3, and
EB4 respectively are the most commonly examined
features of respiration signal. Similarly for EEG

TABLE II: Characteristics of popular machine
learning algorithms.

Algorithm Classification Rule Training Testing

SVM Support Vectors O(n2p+ n3) O(nSV p)

κ-NN Distance Criteria NA O(np)

DT Decision Tree O(n2p) O(p)

LDA Dimension Reduction NA O(npt+ t3)

NB Bayes Theorem O(np) O(p)
n = number of samples, p = number of features, nSV =number
of support vectors, t = min(n, p),SVM=Support Vector
Machine,κ-NN=κ Nearest Neighbor, DT=Decision Tree,
LDA=Linear Discriminant Analysis, NB=Naive Bayes

signal, features from four different frequency range
of the EEG signal namely: Delta(0.5-3.5 Hz), Theta
(4-7.5 Hz), Alpha (8-13 Hz), and Beta (14-32 Hz).
Sample Entropy (SEn) is also used as a feature for
distinguishing between the two states.

Table III lists some of the related works in stress
detection published during the past eight along with
key attributes like number of subjects, physiological
signals used, number of features, length of acquisi-
tion window, number of stress classes and accuracy.

Figure 4 shows an overview of a typical stress
classification framework. The signals from the
wearable sensors are preprocessed and subse-
quently features are extracted from the processed
signals are used to train a machine learning model
to classify between stressed and normal state. In
the context of real time stress monitoring, there are
several design challenges associated with traditional
cloud computing like latency, energy consumption,
cost, security etc. To address these design chal-
lenges, several works have used edge computing
as a potential solution.

IV. EDGE COMPUTING FOR STRESS

MONITORING

The idea of edge computing is to migrate some of
the computing capacity close to the endpoint where
data is collected also known as the edge. When
computations are done at the edge, the response
time from the system reduces considerably as the
data does not need to transmit through a very
long distance. Also, techniques like data abstraction
reduce the amount of data to be processed which
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TABLE III: Related work and attributes.

Year Subjects Signals ML Algorithm Features AW(s) Classes Accuracy(%)
Palanisamy et al. [15]. 2013 10 ECG κ-NN 12 32 2 94.58

Muaremi et al. [16] 2014 10 ECG, Resp, ST, EDA, Activity SVM, κ-NN, ANN, RF 187 NA 2 73
Liapis et al. [17] 2015 31 EDA LDA 21 NA 2 98.8
Zubair et al. [18] 2015 12 EDA LR NA NA 2 91.66

Sandulescu et al. [19] 2015 5 BVP, HRV, EDA SVM NA 0.1 2 80
Ghaderi et al. [20] 2015 7 EDA, EMG, HR, Resp SVM 16 200 3 98.41

Hovsepian et al. [21] 2015 67 ECG, Resp, Activity SVM 22 NA 2 72
Castaldo et al. [22] 2016 10 ECG κ-NN 12 32 2 94.58

Abouelenien et al. [23] 2016 50 HR, Resp, EDA, ST, TF DT 59 NA 2 89.07
Lee et al. [24] 2016 8 Activity SVM 14 300 2 83.34

Gjoreski et al. [25] 2016 5 BVP, ST, EDA, HR RF 63 240 2 76
Mozos et al. [26] 2017 18 EDA, BVP, Speech, Activity AdaBoost NA NA 2 94

Egilmez et al. [27] 2017 7 EDA ,BVP SVM, LR, RF 110 60 2 88.8
Lee et al. [28] 2017 28 BVP, Activity SVM 20 NA 2 95

Chen et al. [29] 2017 9 ECG, EDA, Resp SVM NA 100 3 99
Betti et al. [30] 2018 12 HRV, EDA, EEG SVM 15 300 2 86

Rachakonda et al. [31] 2019 NA Image Inputs CNN 4 NA 2 97
Rachakonda et al. [32] 2019 NA EDA, Activity, ST DNN NA NA 2 98.3

Nath et al. [33] 2020 13 EDA, PPG RF 5 30 2 92
EDA=Electrodermal Activity, EMG=Electromyogram, Resp=Respiration, HR=Heart Rate, ECG=Electrocardiogram,
BVP=Blood Volume Pulse, HRV=Heart Rate Variability, ST=Skin Temperature, PD=Pupil Diameter, LDA=Linear

Discriminant Analysis, SVM=Support Vector Machine, FDA=Fisher Discriminant Analysis, κ-NN=κ-Nearest Neighbor,
LR=Logistic Regression, DT=Decision Tree, ANN=Artificial Neural Network, RF=Random Forest, CNN=Convolutional Neural

Network, AW=Acquisition Window, ML=Machine Learning, NA=Not Available
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Fig. 4: Overview of a machine learning based stress classification framework [14].

results in decreased energy consumption. There is
also additional security with edge computing as less
information is transmitted to the cloud and are less
vulnerable to external threats. Further computation
and storage cost of cloud services will also be
reduced if data is processed in the edge itself
[37]. Figure 5 shows the general overview of a
stress monitoring framework in an edge computing
paradigm [34] [35] [32].

In an edge computing framework, preprocessing,
feature extraction, and classification happen in the
edge layer which is usually very close to the
user. The input signal stream from the user gets
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Fig. 5: Overview of a stress monitoring framework
for edge computing.
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TABLE IV: Related work on stress detection using edge computing.
Edge Cloud

Input Platform Latency (sec) Power Platform Latency (sec) Power
Work Use Cases Signals Consumption Consumption

Pace et al. [34] Worker Stress Raspberry Pi3 0.123 Azure 0.244

ECG ZOTAC NANO PC 0.152

Athlete Stress Raspberry Pi3 0.120 0.338

ZOTAC NANO PC 0.140

Azar et al. [35] Driver Stress ECG, GSR Polar M600 17% 44%

Rachakonda et al. [32] Physical Thermometer Single Board 120-240 NA
Activity Humidity Computer

Accelerometer

Raghav et al. [36] WSEAD ECG, GSR Raspberry Pi3 0.012 NA
EMG, RESP

ST, ACC

SWELL-KW GSR, ECG Raspberry Pi3 0.003 NA

DREAMER ECG, EEG Raspberry Pi3 0.011 NA

processed and analyzed in the edge and the result
is generated in the edge layer itself which can be
forwarded back to the user. The abstracted data
could also be forwarded to the cloud server for
further analyses and research. Table IV shows the
related work in stress detection that has leveraged
the use of edge computing techniques.

In [34], authors have proposed BodyEdge, which
is a three-layer edge framework, namely the IoT
layer, edge layer, and the cloud layer. The proposed
architecture was implemented to detect high stress
levels for workers and athletes from HRV (Heart
Rate Variability) features. It can be observed from
Table IV, the round trip time delay was significantly
lower for the edge-based platforms as compared
to a cloud platform. In [32], authors have used
accelerometer, humidity and temperature sensor and
using Deep Neural Network (DNN) to detect stress
levels in an edge computing framework. The round
trip delay time was reported to be around 2-4
minutes.

In [35], the author proposed a data compression
algorithm to compress the collected data before
transmission. The edge prototype was implemented
in the memory card of a Polar M600 wearable
device. It is reported that the battery life reduced to
just 83% after 4 hours when the data compression
technique was applied as opposed to 56% when the
compression algorithm was not applied. In [36], a
deep learning based framework for stress and affect
classification was proposed and implemented on
Raspberry Pi3. The proposed framework achieved

low latency performance in the WSEAD, SWELL-
KW, and DREAMER dataset.

V. CONCLUSION AND FUTURE WORK

In this article, we have discussed the importance
of continuous real-time stress monitoring. We have
explored the literature and techniques for stress
detection and monitoring. We have also discussed
the existing works in the literature that have used
edge computing framework for real-time stress
monitoring.

Most of the works on stress detection are oriented
towards psychological stress detection. Although
there have been few works on physiological stress
detection, there is further need for research towards
detecting physiological stress. Research should be
conducted to design robust classification models
that can generalize classifications irrespective of the
signal acquisition device and configuration. This
will ensure the applicability of a framework in any
setting irrespective of the type of edge devices and
the configuration in which the data is collected.

Another interesting research direction that could
be explored is the use of an edge-cloud framework
which will distribute the process of preprocessing,
feature extraction and classification across different
layers of edge and cloud. This might be useful when
integrating multiple end users to a single platform.
In this context, there are other research scopes such
as dealing with the massive amount of data that
might be generated at the edge with time. Works
are being done in this field to enhance the quality
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of data storing and retrieval mechanisms in an edge-
cloud settings [38]. Ensuring privacy, security, and
confidentiality of the data streams generated is also
another exciting research direction [37]. Another
direction that would be interesting to explore is
to study the effectiveness of different intervention
mechanisms in mediating acute stress responses.
This will be a critical step towards developing a
ubiquitous stress detection and management system
which has the potential to further develop into a
smart health monitoring system. Finally, real-time
monitoring of stress can be integrated in a smart
home environment [39] to assist older adults and
persons with dementia or cognitive impairment.
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