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Abstract—Human action recognition (HAR) is a challenging
task due to the presence of the pose and temporal variations
in the action videos. To address these challenges, HAR-Depth
is proposed in this paper with sequential and shape learning
along with the novel concept of depth history image (DHI).
A deep bidirectional long short term memory (DBiLSTM) is
constructed for sequential learning to model the temporal rela-
tionship existing between the action frames. Action information
in each frame is extracted using pre-trained convolutional neural
network (CNN). The depth information of each action frame is
estimated and projected onto the X-Y plane to form the DHI.
During shape learning, the shape information through DHI is
used to train a deep pre-trained CNN network. By leveraging the
trained knowledge of the pre-trained network, overfitting issue
is handled. The finetuned network is used to recognize actions
from query DHI images. Data augmentation is adopted to avoid
overfitting of the network by virtually increasing the training set.
The proposed work is evaluated on publicly available datasets
like KTH, UCF sports, JHMDB, UCF101, and HMDB51 and
achieves the performance accuracy of 97.67%, 95.00%, 73.13%,
92.97%, and 69.74% respectively. The results on these datasets
suggest that the proposed work of this paper performs better
in terms of overall accuracy, kappa parameter and precision
compared to the other state-of-the-art algorithms present in the
earlier reported literature.

Index Terms—Action recognition, data augmentation, depth
estimation, fine tuning, sequential learning.

I. INTRODUCTION

RECOGNIZING human actions through computer vision
is a trending research area. Human action recognition

(HAR) is helpful in the field of the visual surveillance sys-
tem as it is having applications in both indoor and outdoor
environments. Now-a-days, research in this area attracts more
number of researchers due to its vast application fields. Some
of the applications of HAR are detection of abnormal ac-
tivities in sensitive areas, patient’s behavior recognition in
hospitals, sports data analysis, video retrieval etc. However,
the HAR paradigm faces challenges in recognizing the actions
efficiently due to the presence of inter-class similarities and
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intra-class variations among the action classes. Inter-class
similarity arises during the recognition of actions like ‘run’,
‘jog’ and ‘walk’, where the shape of the actions are nearly
similar. Different persons perform a same action in a different
way, which results in intra-class action variations. Similarly,
appearance of an action also changes due to camera angle.
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Fig. 1. A thematic diagram of HAR-Depth paradigm aiding the surveillance
application.

Human actions are characterized by simple hand and leg
motions. In complex scenarios, it is the combination of body
motion and interaction with surroundings. Therefore, single
image is not sufficient to perceive an action correctly. It is
about learning the relation between informations extracted
from each frame. The temporal relationship in an action video
is an important aspect to recognize the action type. Various
techniques are developed to recognize human actions, such
as space-time features [1]–[4] and trajectory based methods
[5]–[8]. Recently, sequential learning based long short term
memory (LSTM) is used by the researchers for HAR. LSTM
is made up of input units, output units and hidden units.
The advantage of the LSTM lies in its memory cells, which
can remember the learning parameters or past information.
The modified version of LSTM is bidirectional LSTM or
BiLSTM [9], which is a combination of two LSTMs in
forward and backward directions. The BiLSTM network is
capable of remembering the past information as well as future
information. However, the success of the sequential learning
is very much dependent on efficient features extracted from
the action frames. Along with the sequential information, the
shape information of the whole action needs to be studied.
The HAR paradigm will certainly be more efficient if depth
information is available. Unfortunately, most of the available
datasets for HAR do not have depth information. Depth
information acquired from depth cameras provides better shape
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TABLE I
THE HIERARCHY OF EXISTING TECHNIQUES AND THEIR EVOLUTION IN HUMAN ACTION RECOGNITION.

Approaches Existing works Propositions Solutions

Holistic 
approach Dalal, et al. [2] Histogram of oriented gradient (HOG) Shape through gradients for human detection

Sparse 
representation

Laptev [3] Spatio-temporal interest points (STIP) Detection of 3D local motional corners

Sahoo, et al. [4] STIP filtering through region of interest by MHI Reduction of noisy interest points

Lin, et al. [19] Spatial-temporal histogram of gradients (SPHOG) feature Representation of locally extracted regions

Feature
indexing trees

Yu, et al. [18] Random projection tree with median split Indexing of local features extracted as STIPs

Sahoo, et al. [10] Random projection tree with overlapping split Indexing of local features extracted from LMDI

Feature fusion
Li, et al. [16] Fusion of features from STIP and 3DSURF Combining feature for better human action recognition

Yu, et al. [17] Fusion of appearance features and motion features Leveraging the motion and shape information for HAR

3DCNN Ji, et al. [20] 3D convolution kernel based CNN network Deep network for spatio-temporal information

Multi-stream 
CNN Qin, et al. [22] Fusion of handcrafted features and deep features Leveraging different features for HAR

Sequential 
learning

Gammulle, et al. [25] LSTM on extracted deep features from action frames Modelling of temporal sequential information

Xu, et al. [26] Leverages LSTM and attention networks along with CNN Extracting sequential and shape information for HAR

Proposed work (HAR-Depth) Two-stream deep network with depth history image
Shape representation by depth history image (DHI)

and sequential learning for better HAR

representation, however the depth cameras are not cost effec-
tive. Thus, estimating depth from action frames became an
open challenge to the research society. A thematic diagram of
the proposed HAR-Depth is depicted in Fig. 1.

The rest of this paper is structured as follows: contributions
of this paper are mentioned in section II. The state-of-the-art
methods are discussed in Section III. The proposed work is
explained thoroughly in Section IV, where the sequential and
shape learning details are described along with their detailed
parameter set ups. The algorithm is validated by conducting
experiments on publicly available datasets and the results are
provided in section V. Finally, section VI concludes the work
of this paper.

II. CONTRIBUTIONS OF THE CURRENT PAPER

The challenges of HAR lie in efficient representation of
different actions. The novel contributions of this work which
addresses this issue, are as follows.

• Depth information is estimated for RGB action frames in
this work. The depth frames are projected onto a single
frame for creation of the proposed DHI to represent shape
of an action.

• Another aspect of representing an action is to model
the temporal information lying in between the action
frames. This is carried out by sequential learning through
proposed DBiLSTM network. For DBiLSTM network,
features are extracted from each action frame by pre-
trained CNN network.

• During training of DHI images, the network undergoes
overfitting due to limited training data. The techniques
like transfer learning and data augmentation are adopted
to handle overfitting problem.

• Finally, the scores from both the learning network (shape
learning and sequential learning) are fused to provide the
final recognition score.

III. RELATED PRIOR RESEARCH

In the literature, two different approaches are available for
feature extraction of HAR: handcrafted features and deep
learning based automatic feature extraction. A hierarchy of
existing techniques and their evolution in human action recog-
nition is presented in Table I. Hand crafted features are
the only source for feature extraction before deep learning
approaches. Handcrafted feature extraction technique includes
histogram of optical flow (HOF) [1], histogram of oriented
gradient (HOG) [2], spatio-temporal features like STIP [3],
LMDI [10], HOG3D, HOF3D [4], and motion trajectories
[5]–[7]. Initial development of human action recognition has
started with the view based template matching [11]. A tangent
space [12] is reported, which helps to recognize actions by
projecting the action differences onto the tangent space. For
compact representation of a video, STIP [3] is proposed
to extract movable corners in the action videos. The work
reported in [13] has concentrated on handling multi-view
action classes, where a view invariant feature is proposed to
represent the actions. In [14], the authors have proposed a
human intention inference system for human target prediction.
Haar wavelet transform is used for feature extraction in [15].
The handcrafted features like STIP and 3DSURF features are
combined [16] and the combined feature is classified by a
multi-class SVM. Fusion of appearance features and motion
features is carried out in [17] to recognize human actions. 2D
HOG and HOF local features are extracted and being indexed
by random forest tree structures by Yu et al. [18]. Another type
of spatial-temporal histogram of gradients (SPHOG) feature
for HAR is proposed in [19].
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Fig. 2. Block diagram of the proposed human action recognition framework (HAR-Depth) containing sequential learning through DBiLSTM and shape
learning using DHI images.

In contrast to handcrafted feature extraction techniques,
the deep neural networks extract features automatically. CNN
based techniques provide both feature extraction and classifica-
tion in a single network. The convolution layer extracts feature
in spatio-temporal direction. However, adjusting kernels to
distinguish actions like ‘run’ and ‘jog’ is a tedious task. 3D
convolutional neural network (3DCNN) is developed for hu-
man action recognition in [20]. CNN based feature extraction
along with SVM based classification used for HAR in [21].
Fusion of deep features are proposed by [22] where traditional
features are combined with 3DConvNet features to provide a
better feature vector for HAR. In [4], the above mentioned
closely related actions are better classified compared to earlier
techniques using local 3D features along with semi-supervised
random forest classifier. Stacked Fisher vector [23] is a deep
architecture which relies on dense extraction of cuboids and
trajectories. In [24], single shot multibox detector based action
recognition is performed on each frame.

The recurrent neural network (RNN) is a recent trend in
HAR as it can explore the sequential informations residing
in an action video. Specifically, LSTM represents the sequen-
tial information present among the video frames. Sequential
learning by LSTM on extracted deep features from action
frames is reported in [25]. The work of [26] leverages LSTM
networks and attention networks along with CNN to recognize
human actions. Spatial-optical data organization along with
sequential learning [5] is used to recognize different actions.
During spatial-optical data organization, motion trajectories
and optical flow are used on whole RGB video data. The
concepts of faster R-CNN, two stream CNN and multi region
CNNs are used by Peng et al. [27] for action recognition.
Two LSTM layers are applied in opposite directions to form
a bidirectional LSTM network for recognition of complex
frame-to-frame hidden sequential patterns in [28]. Multi-layer
LSTM network is applied on extracted optical flow features
to learn long term action sequences for industrial surveillance
applications in [29]. Bidirectional LSTM or BiLSTM network,
which is a special kind of LSTM, is used to recognize actions

in [9].

IV. PROPOSED TWO-STREAM NETWORK FOR HUMAN
ACTION RECOGNITION TECHNIQUE

The block diagram of the proposed framework is shown
in Fig. 2. The work is divided into two streams: sequential
learning and shape learning streams. The shape of the action
plays an important role for action representation. In the first
stream, relation between the action frames is extracted using
the DBiLSTM networks. Pre-trained CNN architecture like
AlexNet [30], is used to extract frame level features. In second
stream, depth information of each action frame is estimated
and depth history image (DHI) is proposed to project the action
onto a single X-Y plane. During testing, the recognition score
is generated from both the streams and then fused to provide
the final recognition score to each action class.

The intuition behind proposing the HAR-Depth network
is to leverage maximum information from action videos and
model them effectively to reduce recognition error. As frame-
to-frame sequential information and the action shape are im-
portant to model an action, HAR-Depth is more advantageous.

A. A Deep Bidirectional LSTM (DBiLSTM) Network for HAR

Bidirectional LSTM or BiLSTM network [9] is a combina-
tion of two LSTM cells in forward and backward directions. It
is required to learn the sequential information residing between
frame-to-frame of an action video. Bidirectional nature helps
to remember the past and future information during network
training. In this work, a deep architecture of BiLSTM layers
is created and trained on extracted features. In experiments,
three BiLSTM layers are placed in series with a dropout in
each layer. These dropout factor helps to reduce overfitting of
the network by ignoring some neurons during training. The
proposed two-stream network learns the long term sequences
with the help of DBiLSTM stream. DBiLSTM stream is built
with LSTM cells which is a special kind of RNN network
designed to learn the long term sequences. LSTM layer learns
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Fig. 3. Cell structure of LSTM showing input gate, hidden gate and output
gate layers.

the long term sequences by (i) overcoming the vanishing
gradient problem, and (ii) regulating the cells by non-linear
gating units known as input gate, output gate, and forget gate.

Input to the DBiLSTM network is the collection of features
extracted from each action frame. The recent success of CNN
has made it as a better feature extractor. As action frames
are simply images, any CNN trained on huge image data can
be used for feature extraction. The simplest CNN trained on
large scale ImageNet dataset is AlexNet [30], which comprises
of 5 convolution layers and 3 fully connected layers. During
feature extraction, the frames are passed through the CNN
network and features are collected from last fully connected
layer. The extracted features with a dimension of 1000 are
fed to DBiLSTM network to learn the sequential temporal
information among them.

The LSTM network operates with basic memory cell struc-
tures as shown in Fig. 3. Each memory cell is operated by gate
structures, cell state updation, and hidden state calculation. The
forget gate layer decides whether the previous information will
be forgotten or not. The forget gate fgt can be formulated
using the previous hidden state HSt−1, corresponding weight
Wfg , and bias bfg as below:

fgt = σ(Wfg.[HSt−1, st] + bfg), (1)

where st is the signal or feature vector at time t. Similarly,
input and output gate layers are formulated as follows:

ipt = σ(Wip.[HSt−1, st] + bip), (2)

C̃St = tanh(WCS .[HSt−1, st] + bCS), (3)

opt = σ(Wop.[HSt−1, st] + bop), (4)

In the updation stage, the cell state and the hidden state are
updated as in (5) and (6).

CSt = CSt−1.fgt + ipt.C̃St, (5)

HSt = tanh(CSt).opt. (6)
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Fig. 4. Flowchart of the proposed depth history image (DHI) using deep
learning based DehazeNet network.

B. Depth History Image (DHI)-The Novel Concept of this
Work

The shape of an action plays an important role in differenti-
ating it from other actions. The DHI is proposed in this work
to describe the shape of an action through depth estimation.
The detailed procedure is explained in Fig. 4. Generally the
foreground and background objects exist at different depth
levels. By using the estimated depth map, the foreground
human action can be separated from the background. The
advantage of depth based imaging lies in the availability of
more information about the appearance of an object. As depth
data is not available for all datasets, depth estimation technique
can be helpful. In this work, depth information is extracted
through medium transmission map as used in DehazeNet [31]
for haze removal. DehazeNet uses a deep learning network
to estimate the depth map. The details of the architecture are
provided in Fig. 4. Let, H be the hazy image, I be the haze
free image, then the relation between them can be represented
as:

H(x, y) = I(x, y).Tr(x, y) + µ(1− Tr(x, y)), (7)

where Tr is the medium transmission map and µ is the
global atmospheric light. To recover I, Tr should be estimated
properly. Tr depends on the depth of the scene i.e. distance
of the scene from the camera as defined below.

Tr(x, y) = e−ηd(x,y), (8)

where η is the scattering coefficient of the atmosphere and d
is the distance of the scene from the camera. This concept
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Fig. 5. Training of DHI images through transfer learning on AlexNet.

is utilized in the proposed work to estimate depth maps for
action scenes.

The next step is to prepare the DHI. All the estimated depth
frames are projected onto a single X-Y plane to calculate the
DHI for its corresponding action video as shown in Fig. 4. The
DHI is calculated by averaging the depth estimated frames as
shown in (9). Let, the depth estimated frames be dBSi , for
i =1,...,N and then, the depth history image for an action is
represented as follows.

IDHI =
1

N

N∑
i=1

dBSi (9)

C. Proposed Methods for Transfer Learning and Data Aug-
mentation for DHI

Training of any deep neural network from scratch requires
huge training data. As number of extracted DHI images are not
sufficient, the training procedure faces overfitting. To handle
this problem, two techniques such as transfer learning [32]
and data augmentation [32] are adapted in this work.

1) Transfer Learning: It is the process of transferring
learned weights or knowledge from a pre-trained network
and retraining them. In this work, the pre-trained weights of
AlexNet are taken as the initial weights while training the DHI
images. The detailed procedure is shown in Fig. 5. The layers
except the final fully connected layer (fc8), softmax layer
and the classification layer of AlexNet are transferred. The
final three layers of the AlexNet are replaced according to the
requirement. Number of channels in the final fully connected
layer (fc8) is decided by the number of action classes present
in the dataset. Feature maps for DHIs after first convolution
layer through transfer learning are depicted in Fig. 6.

2) Data Augmentation: Data augmentation is a technique
to increase the number of samples internally when training
data is very less. The network will look a single image as
different images in each loop through specific data variations.
The procedure increases the efficiency of the network by
reducing the overfitting effect upto some extent. In this work,
combination of four types of augmentation techniques is used.
The details are given in Table II. The subjective representation
of output of data augmentation is provided in Fig. 7.

Fig. 6. Extracted feature maps for DHI of example actions from first
convolution layer.

(a)

(b)

(c)

(d)

Fig. 7. Data augmentation on DHI images. (a) various X-Translation (b)
various Y-Translation (c) various rotation (d) random reflection combined
with (a)-(c). (DHI of boxing action of KTH dataset is used for representation
purpose. The translation and rotation values are increased for this figure to
demonstrate the changes).

D. Score Fusion

Let the scores generated from sequential learning be Ssq
and scores generated from shape learning be Ssp. Then, final
score is calculated by taking α probability of Ssq score and
(1-α) probability of Ssp. Here, α is the fusion parameter.

Sfinal(i) = αSsp(i) + (1− α)Ssq(i), (10)

where, i=1,...,N , and N is the number of action classes present
in the dataset.

The effect of α on performance accuracy is studied to decide
the optimal value. As an example, the results on two small-
scale (KTH, JHMDB) and one mid-scale (UCF101) datasets
are depicted in Fig. 8. It can be observed that the performance
of the proposed technique is better at α equal to 0.5. From
experiments, it is found that by giving equal weightage to both
the representations, the performance is better. This observation
concludes to choose the α equals to 0.5 throughout this work.

E. Training Procedure

This section discusses about the effect of the number of BiL-
STM layers in the DBiLSTM stream on the performance, the
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TABLE II
DETAILS OF THE DATA AUGMENTATION PARAMETERS USED DURING

TRAINING.

Sl No Type Range

1 X-Translation random shifting in [-5, 5] pixels
2 Y-Translation random shifting in [-5, 5] pixels
3 Rotation random rotation in [-10, 10] degrees
4 X-Reflection -
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Fig. 8. The effect of fusion parameter on overall accuracy for KTH, JHMDB,
and UCF101 datasets.

optimization technique in the training procedure and the loss
function used to calculate the loss. A detailed training/testing
step is provided in the Algorithm 1.

1) Depth of DBiLSTM Layers: To study the effect of the
number of BiLSTM layers in the DBiLSTM stream, an ex-
periment is carried out for the analysis between classification
accuracy and training time. As an example, the results are
shown for the KTH dataset in Table III. From the tabulation,
it is observed that the training time has increased by increasing
the depth of the DBiLSTM layers. DBiLSTM network with
3 layers shows the maximum classification performance. By
increasing the depth further, there is a little improvement or no
improvement in the performance compared to large increment
in training time. Therefore, to keep the balance between
performance and training time, three number of BiLSTM
layers are chosen in the DBiLSTM stream.

2) Steepest Descent Gradient with Momentum (SGDM):
For network optimization, steepest descent gradient with
momentum (SGDM) optimizer is applied. Let W, b, η be
the weights, bias and learning parameter for the network.
Similarly, dW and db are the derivatives of the cost function
with respect to weight and bias respectively. vdW , vdb are the
velocities with respect to weight and bias. Then, SGDM is
defined as:

Wnew =Wprev − η.vdW ,
bnew = bprev − η.vdb,

(11)

where,

vdW = β.vdW + (1− β).dWprev.
vdb = β.vdb + (1− β).dbprev.

(12)

The momentum parameter β is chosen as 0.9 or above. By
doing so, the vertical oscillation of the weight updation path
is reduced resulting in a faster training procedure.

Algorithm 1: Training/testing steps of the proposed
two stream HAR-Depth framework

Initialize training action video set Vtrain with class
labels Ytrain, testing action video set Vtest, number
of action classes C, batch size B, number of epochs
E, Fusion parameter α, XB variable to store feature
vectors, DBiLSTM layers Lseq and transfer learning
layers from AlexNet for depth learning layers Ldepth.

Function Training (Vtrain, Ytrain, Lseq, Ldepth, B,E)
for epochs=1 to E do

VB = B number of videos from Vtrain
YB = B corresponding labels from Ytrain

Sequential learning stream
Load AlexNet #Pre-trained CNN network

[XB(i)]
B
i=1 = [Pass (VB(i), AlexNet)]

B
i=1

SSeq = TrainNetwork(XB , YB , LSeq)
Clear XB

Shape learning stream
Load D =DehazeNet #For depth estimation

Ni = Number of frames in VB(i)

[XB(i)]
B
i=1 =

[
1
N

N∑
j=1

Pass (VB(i, j), D)

]B
i=1

SDepth = TrainNetwork(XB , YB , LDepth)

Save SSeq, SDepth
Update LSeq, LDepth

end
End Function

Function Testing (Vtest, SSeq, SDepth)
for V ∈ Vtest do

#V is a single query video from Vtest

XSeq = Pass (V,AlexNet);

XDepth =
N∑
j=1

Pass (V (j), D) ; #N: Number of frames in V

Score1 = Classify (XSeq, SSeq) ;
Score2 = Classify (XDepth, SDepth) ;
ScoreFinal = α.Score1 + (1− α).Score2 ;
Recognized action class = arg max

C
(ScoreFinal)

end
End Function

3) Cross Entropy Loss: Loss is calculated at the classifica-
tion layer after each feed forward pass. To calculate the loss,
cross entropy technique is applied in this paper. Let, C be the
total number of action classes, p be the generated score in the
softmax layer, and l represents the classification layer. Then,
the cross entropy loss is defined as follows.

Loss = −
C∑
i=1

li log(pi) (13)

Here, li is either 0 or 1, and the negative sign in (13) is to
counter the negative value of the log function.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE III
EFFECT OF DEPTH OF THE DBILSTM NETWORK ON CLASSIFICATION

ACCURACY AND TRAINING TIME.

BiLSTM layers 1 2 3 4 5

Classification
Accuracy (%) 82.33 82.85 85.46 84.53 84.19
Training Time
(in Second) 701.77 821.12 957.8 1155.59 1343.63

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results obtained from proposed
HAR-Depth algorithm on different small-scale and mid-scale
datasets and discusses the overall performance.

A. Datasets Used in Our Experiments

Three small-scale datasets such as KTH [33], UCF sports
[34], JHMDB [35] and two mid-scale datasets like UCF101
[36], HMDB51 [37] are used to evaluate the proposed work.

KTH dataset: The dataset contains six types of actions,
which are collected from indoor and outdoor environments.
The dataset is having more inter-class similarity as it contains
similar actions such as ‘running’, ‘jogging’, ‘walking’, ‘box-
ing’, ‘hand waving’, and ‘hand clapping’. Nearly, 100 action
videos are present per each class and the actions are performed
by 25 different persons. In our experiments, actions of 16
persons are grouped as training set and the rest are utilized
for testing as reported in [18].

UCF Sports dataset: The UCF sports dataset is more
realistic and is collected from broadcast television. The dataset
consists of 150 action videos of 480×720 resolution in 10
action classes. Due to the presence of less number of action
videos per class, leave one out cross validation (LOOCV)
method is adopted as mentioned in [34]. The actions present
in this dataset are : ‘diving’, ‘golf swing’, ‘kicking’, ‘lifting’,
‘riding horse’, ‘running’, ‘skate boarding’, ‘swinging bench’,
‘swinging side’ and ‘walking’.

JHMDB dataset: The JHMDB dataset is a relatively com-
plex dataset having 21 action classes with 36-55 action videos
in each class. All the actions are single human actions and are
named as ‘brush hair’, ‘catch’, ‘clap’, ‘climb stairs’, ‘golf’,
‘jump’, ‘kick ball’, ‘pick’, ‘pour’, ‘pull-up’, ‘push’, ‘run’,
‘shoot ball’, ‘shoot bow’, ‘shoot gun’, ‘sit’, ‘stand’, ‘swing
baseball’, ‘throw’, ‘walk’, ‘wave’. The dataset is divided into
training and testing set as mentioned in [35].

UCF101 dataset: The dataset is having 101 number of
action classes with a total of 13320 number of action videos.
The actions are broadly classified into five types such as
1) human-object interaction 2) body-motion only 3) human-
human interaction 4) playing musical instruments 5) sports.

HMDB51 dataset: This complex dataset contains nearly
7000 videos in 51 action classes. Broadly, the dataset contains
the action types such as real time basic actions, facial actions,
human-object interaction, and human-human interaction.

B. Experimental Setup

• During the experiments, training is very much important
as DHI images are new to AlexNet. Training of

DHI images on AlexNet will update the network in
accordance to depth knowledge which in turn produces
better features during feature extraction. As the number
of videos in UCF sports and JHMDB datasets are
comparatively less than KTH dataset, the KTH dataset
is first trained through transfer learning. The weights
of the trained dataset is used for UCF sports and
JHMDB datasets. The mid-scale datasets are trained
independently as the number of videos are larger
compared to small-scale datasets.

• In BiLSTM network, three BiLSTM units are used in
sequence. The number of hidden units are 150 in first
layer, 125 in second layer and 100 in third layer. Other
chosen parameters are: mini-batch size as 8, maximum
number of epochs as 300 and initial learning rate as
0.001. All the values are chosen empirically.

• The shape learning network, which uses the layers of
AlexNet, has the following parameters: maximum num-
ber of epochs as 300 and initial learning rate as 0.0001.

All the implementations are carried out in MATLAB platform
(Version: 9.4.0.813654 / R2018a) with Intel Xeon E5-2630
v4 (10 Core, 2.2 GHz, 32GB RAM) processor and NVIDIA
Quadro M4000 8GB GPU. For quantitative assessment, the
parameters used to compare the proposed method with the
previously reported techniques are: classification accuracy
(CA), kappa parameter (k) and precision (P).

C. Evaluation of the Proposed HAR-Depth Network

1) Effect of Batch Size: Batch size is defined as the number
of training samples passed through the learning network before
calculation of the loss function. The lower the batch size, the
faster is the convergence of the training procedure. A detailed
experiment is carried out on two small-scale datasets (KTH,
JHMDB) and one mid-scale dataset (UCF101) to explain the
effect of batch size on training loss and performance accuracy.
The same is depicted in the Fig. 9.

2) Sample Complexity: The performance of the proposed
network is analyzed by varying the number of samples per
each class and this is termed as sample complexity analysis. In
the experiment, the amount of training samples are increased
in a 20% increment strategy and the effect on the performance
accuracy is analyzed. It is found that, as the number of
training samples have increased, the performance of the system
increases accordingly as depicted in Fig. 10.

3) Class Complexity: The performance of the proposed
network is also analyzed by varying the number of action
classes in the training dataset and this is termed as class
complexity analysis. The analysis is carried out on shape
learning stream to analyze the effect of DHI on the whole
network. Similar to sample complexity analysis, the training
classes are increased in a 20% increment set up and the
performance accuracy is analyzed. As number of actions in the
dataset increases, the performance is reduced due to increase
in inter-action complexity as depicted in Fig. 11.
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Fig. 9. The effect of batch size on training accuracy and training loss, (a)-(c) Training accuracy, (d)-(f) Training loss for KTH, JHMDB and UCF101 datasets.
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Fig. 10. Sample complexity analysis of KTH, JHMDB and UCF101 datasets.

4) Ablation Study: As the proposed HAR-Depth is a two-
stream network, the effect of each stream on HAR is analyzed.
The performance for DBiLSTM stream and DHI based shape
stream are provided separately in Table IV. The overall per-
formance accuracy is also provided for comparison purpose.
To evaluate the stability of the network, standard deviation of
performance accuracy for all the datasets are also provided
along with the overall accuracy.

The second stream of the HAR-Depth network consists
of training of DHI images with data augmentation (DA)
and transfer learning (TL) techniques. Therefore, an ablation
study is carried out to analyze the effect of different parts
of the network on the overall performance as depicted in
Table V. From the table, it is observed that the transfer learning
technique is very much effective to provide better performance
on a small-scale dataset. The data augmentation has helped to
improve the performance of the network.
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Fig. 11. Class complexity analysis for DHI stream with KTH, JHMDB and
UCF101 datasets.

TABLE IV
ABLATION STUDY OF DIFFERENT STREAMS OF HAR-DEPTH NETWORK

FOR ALL THE EVALUATING DATASETS.

Datasets DBiLSTM stream DHI stream Overall
Accuracy (%) Accuracy (%) Accuracy (%)

KTH 85.46 80.46 97.67 ± 1.61
UCF sports 90.91 84.55 95.00 ± 0.45
JHMDB 60.82 57.09 73.13 ± 2.05
UCF101 85.25 62.39 92.97 ± 0.95
HMDB51 62.16 46.41 69.74 ± 2.46

D. Comparison of Results with the Earlier Reported Methods
for Small-scale Datasets

To evaluate the proposed work, three datasets namely KTH,
UCF sports and JHMDB are used. Performance of each dataset
with earlier reported techniques is discussed one after another
in this section. The KTH dataset is challenging to differentiate
the actions like running, jogging and walking. The efficiency
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TABLE V
ABLATIVE STUDY OF THE PROPOSED HAR-DEPTH NETWORK IN TERMS

OF PERFORMANCE ACCURACY (IN %) ON KTH DATASET. ABLATIONS
INCLUDE THE DBILSTM STREAM, BASELINE DHI STREAM, DHI WITH

DATA AUGMENTATION (DA) ONLY, DHI WITH TRANSFER LEARNING (TL)
ONLY, DHI WITH DL AND TL

Epochs 20 40 60 80 100

DBiLSTM 81.49 81.72 83.92 84.15 84.85
DHI 48.03 53.70 62.73 65.16 68.06
DHI+DA 49.31 57.29 64.70 70.02 70.72
DHI+TL 73.74 75.47 75.70 76.63 77.90
DHI+DA+TL 75.24 76.17 77.21 77.44 78.37

of the algorithm depends on the higher accuracy of these three
related actions. The actions are difficult to differentiate since
the shape of the actions are nearly similar. It is the action
execution time which differentiates them from each other.
The frequency of action pattern in running is higher than
that of jogging and walking. In literature, the KTH dataset
is tested and evaluated by the methods proposed by [4], [6],
[7], [13], [15], [18], [22]. 2D features [18] and view invariant
features [13] do not have any special approach to distinguish
the actions differentiated by action time. In contrary to this,
the trajectory based approach [6] and 3DCNN [22] based
approaches can handle the problem upto some extent. In our
previous work [4], 3D HOG and HOF features are combined
with semi-supervised random forest which handles the closely
related actions more accurately. CNN and trajectory based
approaches are combined by Shi et al. [7] for which the overall
accuracy is 96.8%. In this work, the sequential information
among action frames are combined with depth estimated action
shape to distinguish the actions more accurately. The confusion
matrix for the proposed work is presented in Fig. 12(a). The
performance accuracy of 97.67% is achieved by the proposed
technique which is 0.87% and 1.38% better than [7] and [4]
respectively as depicted in Table VI.

Statistical indices such as sensitivity, specificity and positive
predictivity are presented for all the action classes in Table
VII. The ‘waving’ action is better classified as its statistical
index values (sensitivity of 1, specificity of 1 and positive
predictivity of 0.99) are better than others. The better result
of the proposed method is obtained by leveraging sequential
learning, deep neural networks and combining them with
action shape through depth estimation. As recognizing the
actions like running, jogging, walking is the challenge for
KTH dataset, average accuracy of these three classes is calcu-
lated for analysis. In this work, the closely related actions are
classified with an average accuracy of 96.76%. Similarly, the
average accuracy of other three classes and overall accuracy
are found to be 98.61% and 97.67% respectively.

The UCF sports dataset is a complex dataset compared to
KTH dataset as it is collected from real time broadcast televi-
sions. Therefore, the performance on this dataset plays a vital
role on efficiency of the proposed method. The UCF sports
dataset is tested and evaluated by the methods proposed by [4],
[12], [19], [26], [38] and our proposed method. The confusion
matrix is shown in Fig. 12(b) and comparison with state-
of-the-art methods is shown in Table VI. The work of [12]

TABLE VI
COMPARISON OF THE PROPOSED TECHNIQUE WITH EXISTING

STATE-OF-THE-ART TECHNIQUES FOR SMALL-SCALE DATASETS

Dataset Method CA (%) k P

Chou, et al. [13] 90.58 0.66 90.90
Yu, et al. [18] 91.80 0.70 92.78
Samanta, et al. [15] 94.91 0.81 94.82

KTH Dataset Megrhi, et al. [6] 94.90 - -
Qin, et al. [22] 95.10 - -
Sahoo, et al. [4] 96.29 0.87 96.55
Shi, et al. [7] 96.80 0.89 97.08
Proposed method 97.67 0.92 97.73

Song, et al. [38] 73.67 0.25 77.10
Lui, et al. [12] 88.00 0.35 89.10

UCF Sports Dataset Lin, et al. [19] 89.80 - -
Xu, et al. [26] 91.89 - -
Sahoo, et al. [4] 92.67 0.54 92.64
Proposed method 95.00 0.72 95.00

Gkioxari, et al. [21] 62.50 0.75 64.23
Peng, et al. [23] 69.03 - -

JHMDB Dataset Gammulle, et al. [25] 69.00 0.71 68.48
Singh, et al. [24] 72.00 - -
Peng, et al. [27] 73.10 - -
Proposed method 73.13 0.66 78.31

TABLE VII
COMPARATIVE PERFORMANCES OF ALL CLASSES OF KTH DATASET

USING PROPOSED TECHNIQUE

Actions Sensitivity Specificity Positive predictivity

Boxing 0.98 1.00 0.99
Waving 1.00 1.00 0.99
Clapping 0.98 1.00 0.99
Jogging 0.94 0.99 0.97
Running 0.96 1.00 0.99
Walking 1.00 0.99 0.94

requires action localization for better action recognition. Lui
et al. [12] have extended HOG to SPHOG for better temporal
representation of an action. Recently sequential learning [26]
is used to learn the sequential information present between
frames. In this proposed work, sequential learning is aided
with depth based shape information to make the algorithm
more efficient. As a result, an accuracy of 95% is found
which is better than the earlier techniques. Similar to KTH
dataset evaluation, statistical indices are calculated for UCF
sports actions to analyze the recognition efficiency of different
actions, which is shown in Table VIII. The best recognized
actions are found to be ‘diving’, ‘lifting’, and ‘swinging’ as
all the parameters of these classes are better than other classes.
The recognition performance of ‘walking’ class is the lowest
as it is confused with ‘riding horse’, ‘golf swing’ and ‘skate
boarding’.

The JHMDB dataset is tested and evaluated by the methods
proposed by [21], [23]–[25], [27]. The confusion matrix for the
dataset is given in Fig. 12(c). The overall accuracy is found to
be 73.13% by the proposed method. Comparison of the perfor-
mance accuracy with state-of-the-method is presented in Ta-
ble VI. The methods reported in [21], [23], [24], [27] have not
considered the long term temporal relationship residing in an
action video. LSTM technique is a better algorithm to extract
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Fig. 12. The confusion matrices for small-scale datasets using the proposed technique. The details of action names are reported in datasets subsection in
sequence, (a) confusion matrix for KTH dataset, (b) confusion matrix for UCF sports dataset, (c) confusion matrix for JHMDB dataset
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Fig. 13. Comparison of the discrete ROC graphs for small-scale datasets with state-of-the-art techniques (The better technique resides more towards (0,1)
corner). (a) KTH dataset (b) UCF sports dataset (c) JHMDB dataset. (The size of circle is a scaled representation of amount of improvement from previous
technique)

TABLE VIII
COMPARATIVE PERFORMANCES OF ALL CLASSES OF UCF SPORTS

DATASET USING PROPOSED TECHNIQUE

Actions Sensitivity Specificity Positive predictivity

Diving 1.00 1.00 1.00
Golf swing 0.95 0.99 0.91
Kicking 0.92 1.00 1.00
Lifting 1.00 1.00 1.00
Riding horse 0.86 0.98 0.86
Running 0.88 1.00 1.00
Skate boarding 0.91 0.99 0.91
Swinging bench 1.00 1.00 1.00
swinging side 1.00 1.00 1.00
walking 1.00 0.98 0.82

relation between action frames by sequential learning. Feature
extraction by pre-trained CNN networks and sequence learning
by LSTM are performed by [25] and achieved comparable
results with existing techniques. Since, the proposed work
uses BiLSTM networks and depth estimated shape information
combiningly, it can extract temporal and shape information
more accurately, which results in better performance compared
to the earlier reported techniques.

The proposed algorithm is evaluated through discrete ROC
graph for all the mentioned small-scale datasets and presented
in Fig. 13. ROC graph is a spatial presentation of true positive
rate vs false positive rate. A perfect classifier will have the
upper right corner (0,1) of the ROC graph. An algorithm is
better compared to other if it is more north west positioned

on ROC graph. As shown in Fig. 13, for KTH, UCF sports,
and JHMDB datasets, the proposed technique performs better
compared to state-of-the-art techniques as it is closest to (0,1)
on ROC graph.

E. Comparison of Results with the Earlier Reported Methods
for Mid-scale Datasets

The proposed network is evaluated on two mid-scale
datasets such as UCF101 and HMDB51. The confusion matrix
for both the datasets are depicted in Fig. 14. The performance
accuracy of UCF101 dataset is compared with the techniques
reported in [5], [7], [28], [39]–[43] and the performance
accuracy of HMDB51 dataset is compared with the tech-
niques reported in [5], [7], [29], [39]–[46]. Comparison of
the performance accuracy of the proposed technique with
state-of-the-art methods are depicted in Table IX for UCF101
dataset and in Table X for HMDB51 dataset. The performance
accuracy of 92.97% and 69.74% are achieved for UCF101 and
HMDB51 datasets respectively, which are better compared to
all the reported state-of-the-art methods. From the confusion
matrices, it can be visualized that for all the action classes, the
diagonal cells or true positives are brighter which represents
the effectiveness of the proposed technique. Similar to the
parameters presented in Table VI, a k value of 0.72 and 0.87,
a P value of 93.44 and 71.21 are reported for UCF101 and
HMDB51 datasets respectively.

Finally, it is observed that the proposed HAR-depth tech-
nique faces challenge when two closely related faster actions
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Fig. 14. The confusion matrices for mid-scale datasets by the proposed
technique, (a) confusion matrix for UCF101 dataset, (b) confusion matrix
for HMDB51 dataset.

TABLE IX
COMPARISON OF THE PROPOSED TECHNIQUE WITH EXISTING

STATE-OF-THE-ART TECHNIQUES FOR UCF101 DATASET

Methods CA (%)

Liu et al. [39] 76.30
Lu et al. [40] 90.10
Wang et al. [41] 90.30
Feichtenhofer et al. [42] 90.80
Yuan et al. [5] 90.90
Ullah et al. [28] 91.21
Zhao et al. [43] 91.70
Shi et al. [7] 92.20
Proposed HAR-Depth 92.97

are recognized at the same time e.g. ‘riding horse’ and
‘running’ actions of UCF sports dataset. Similarly, the close
temporal pattern of ‘kicking’ and ‘golf swing’ has also become
troublesome during the recognition HAR-Depth technique. In
KTH dataset, the closely related actions are recognized with
an average performance accuracy of 96.67%.

TABLE X
COMPARISON OF THE PROPOSED TECHNIQUE WITH EXISTING

STATE-OF-THE-ART TECHNIQUES FOR HMDB51 DATASET

Methods CA (%)

Liu et al. [39] 51.40
Yang et al. [44] 60.80
Xin et al. [45] 61.10
Feichtenhofer et al. [42] 62.10
Wang et al. [41] 63.20
Lu et al. [40] 64.50
Zhao et al. [43] 64.80
Shi et al. [7] 65.20
Yuan et al. [5] 65.70
Sekma et al. [46] 68.50
Proposed HAR-Depth 69.74

VI. CONCLUSIONS

This paper has introduced a two-stream HAR-Depth net-
work for HAR. The proposed network is capable of learning
the long-term sequences to recognize different action classes.
The DBiLSTM stream learns the sequential information and
the DHI stream learns the shape information of an action. The
DHIs are constructed to provide better shape representation by
estimating depth information from RGB action frames. The
problem of network overfitting due to less training data is
overcome by the transfer learning and data augmentation tech-
niques. It is observed that the proposed HAR-Depth network
performs better in terms of performance accuracy compared
to the state-of-the-art techniques for five different publicly
available datasets like KTH, UCF sports, JHMDB, UCF101,
and HMDB51. Various ablation studies, parameter sensitivity,
sample complexity, class complexity analysis suggest that the
proposed HAR-Depth performs well and provides promising
performance for HAR.
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