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Fortifying Vehicular Security Through Low Overhead
Physically Unclonable Functions
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Within vehicles, the Controller Area Network (CAN) allows efficient communication between the
electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol
was not designed to include much support for secure communication. The fact that so many critical
systems can be accessed through an insecure communication network presents a major security
concern. Adding security features to CAN is difficult due to the limited resources available to the
individual ECUs and the costs that would be associated with adding the necessary hardware to
support any additional security operations without overly degrading the performance of standard
communication. Replacing the protocol is another option, but it is subject to many of the same
problems. The lack of security becomes even more concerning as vehicles continue to adopt smart
features. Smart vehicles have a multitude of communication interfaces would an attacker could
exploit to gain access to the networks. In this work we propose a security framework that is based
on physically unclonable functions (PUFs) and lightweight cryptography (LWC). The framework
does not require any modification to the standard CAN protocol while also minimizing the amount
of additional message overhead required for its operation. The improvements in our proposed
framework results in major reduction in the number of CAN frames that must be sent during
operation. For a system with 20 ECUs for example, our proposed framework only requires 6.5% of
the number of CAN frames that is required by the existing approach to successfully authenticate
every ECU.
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1 INTRODUCTION
Vehicles are no longer a purely mechanical machine. Modern vehicles include a not insignifi-
cant number of digital components such as infotainment systems and the electronic control
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units (ECUs) that are responsible for controlling the various subsystems within the vehicle.
These devices are connected via various intra-vehicle networks, the most notable being the
Controller Area Network (CAN) which provides a relatively inexpensive method for several
ECUs to communicate with each other [10].

Unfortunately, CAN was not developed with security in mind. The lack of security has
become much more alarming over the last decade as researchers have been able to successfully
attack vehicles by exploiting the shortcomings in the CAN protocol. A very notable example
of this was in 2015 when researchers were able to control a consumer vehicle [26]. Due to
the nature of CAN, the ECUs for such systems as the engine, brakes, and steering were
all connected to the same CAN bus. All an attacker needs to do to carry out an attack is
gain access to the CAN bus. This could be achieved through somehow compromising an
ECU or more simply creating their own connection. The lack of security features means that
all transmitted messages are treated as being from a valid source regardless of their actual
origin. For example, an attacker could send a message instructing the vehicle to apply the
brakes. The vehicle would comply as it has no way of verifying the validity of the message.

The issue of vehicular security is likely to become even more pressing in the coming years.
This in large part can be contributed to the continual push to develop fully autonomous
vehicles in addition to the inclusion of smart features in vehicles. Every new type of connection
added to a vehicle represents a new potential attack surface for malicious actors. Some
of the connections include vehicle-to-vehicle (V2V), vehicle-to-network (V2N), vehicle-to-
infrastructure (V2I), and vehicle-to-pedestrian (V2P). This overall connected environment
is collectively referred to as vehicle-to-everything (V2X) [7].

Fig. 1. PUF Integrated Smart Vehicle

It is difficult to design a singular security solution since a vehicle’s expanded features are
provided by separate subsystems which communicate via in-vehicle communication networks.
There in fact exists a knowledge gap in terms of how damage could by caused by attacking
various components and systems of the vehicle. For example, it has been shown to be possible
to compromise some of a vehicle’s sensors in order to trick the driver and/or the vehicle’s
control system. However, it is unknown just how vulnerable all of the sensors are and how
severe of a reaction can be induced by a hacked sensor generating erroneous readings [29].
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This is a constantly evolving problem that demands regularly devising new techniques
to combat previously unknown vulnerabilities. However, vulnerabilities that have been
known for years demand a similar level of time and focus. A major target should be devising
solutions for the inherent vulnerabilities in the CAN bus. Because CAN is such a fundamental
communication network, any potential security solutions should seek to remain as true as
possible to the original specification. Major deviations could result in the need to redesign
an untold number of internal systems to make them compatible with the new solution.

In this work we propose a new security framework that adds security features while
minimizing overhead and without making any changes to the basic CAN protocol. This
framework is a server-based approach where a central server connected to the CAN bus is
responsible for authenticating all connected nodes and generating session keys. The design
utilizes physically unclonable functions (PUFs) as the basis for key storage, key generation,
and the authentication of the nodes. Lightweight cryptographic algorithms are employed
as they are more aptly suited than standard cryptographic algorithms to the resource
constrained environments of vehicles. Figure 1 shows an example of the proposed framework
incorporated into a smart vehicle environment.

The rest of this work is organized as follows: Section II presents our vision for using PUFs
as a low overhead smart car security solution; Section III describes related work on consumer
electronics security and provides background information on CAN, its vulnerabilities, and
PUFs; Section IV describes the proposed framework’s operation in detail; Section V analyzes
the framework and its security capabilities; Section VI provides a comparison to other
PUF-based security frameworks; lastly, Section VII concludes the paper.

2 OUR VISION FOR PUF-BASED LOW OVERHEAD SMART CAR SECURITY
We believe that the security challenges facing vehicles are so unique that classical security
approaches alone will not be sufficient. Vehicles are designed such that some of their core
functionality is directly provided by inherently insecure components and subsystems. These
components are in fact so well ingrained that replacing all of them would likely require
vehicles to be fundamentally redesigned from the ground up. While an approach like this
could work in theory, the sheer cost of design, not to mention the material costs of the new
components, would seem to prevent this from being a truly viable option for anything short
of very long term goals.

In addition to providing security, we believe that for a security solution to be more
immediately viable it should minimize both the monetary and computational costs that
would be incurred by its introduction to the vehicle. As such, there are three major design
goals that vehicle security solutions should strive to meet:

(1) Minimize additional hardware and computation.
(2) Avoid significant changes in protocols.
(3) Minimize communication overhead.
First, security solutions should seek to minimize the addition of extra hardware and

computation. The resource constrained and real-time nature of vehicles does not allow for
much extra computation for things like encryption. Upgrading the existing devices or adding
specialized hardware to provide the resources needed for the additional computation would
drive up implementation costs.

Second, solutions should not make any significant changes to protocols. We consider
significant changes to include any modification that would require likewise changes in the
supporting hardware. For example, replacing a communication protocol or adding additional
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message fields cannot occur without upgrading the current infrastructure to support the
new features.

Lastly, a solution should try to minimize communication overhead so that it does not
effectively violate the second goal without actually changing the protocol itself. Some
protocols like CAN can only send a very limited amount of data per message. Breaking a
single transmission across multiple CAN messages allows for the transmission of cryptographic
keys and encrypted data, but at the cost of reducing the bandwidth and responsiveness of
the network.

Many potential security solutions would introduce additional overhead in both compu-
tation and the number of additional messages that must be sent in support of the normal
transmission of data [38] [20] [31]. Furthermore, some solutions would likely require the
addition of hardware for features such as secure key storage and generation, data encryption,
etc. The use of physically unclonable functions (PUFs) in security solutions could potentially
provide a cheaper option for the implementation of some of the these features. PUF-based
security solutions would thus more closely align with our previously stated design goals.
It is for that reason that our proposed security framework is directly based on PUFs. An
example of this integration, which is used by our proposed framework, is shown in Figure
2. Every ECU would include its own PUF which could then be utilized by a variety of
security operations. Integration of a PUF in this manner would leave open the possibility of
maintaining the underlying CAN protocol and thus should not require any modifications to
the actual CAN network infrastructure that connects the ECUs.

Fig. 2. ECU PUF Integration

3 BACKGROUND
3.1 Prior Related Work on Consumer Electronics Security
Providing security to vehicles is a challenging problem that is not readily solvable by con-
ventional solutions. Even just the diagnosis of security threats has required the development
of novel intrusion detection methods [27]. However, the security issues facing vehicles are
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not as isolated as they might appear. Similar security concerns are actually being raised
in a variety of other areas. This general trend is a direct response to society’s adoption of
the Internet of Things (IoT). The addition of smart features to an increasing number of
consumer electronics has also introduced security vulnerabilities and concerns that were not
present when the devices were originally designed.

Developing methods to combat these new challenges has drawn interest from a number of
researchers. This has included classical approaches such as designing hardware security chips
for mobile devices [18] and secure firmware validation and update schemes for personal home
devices [8]. Other areas of interest include security architecture for edge devices [33] and
protecting the runtime data of embedded systems through hardware-enhanced cryptographic
engines including AES and the hashing algorithm LHash [35].

Researchers have also taken to examing more novel security approaches such as creating
PUFs that are specifically designed for use in IoT applications. This has included both
adaptations of established designs such as Ring Oscillator (RO) PUF [19] along with novel
approaches such as designs based on adiabatic logic [22] and bloom filters on memristor-based
PUFs [24]. Researchers have explored how PUFs such as these could serve as the basis for
more complete security frameworks and systems. One interesting example is a framework
in which individual embedded devices use PUFs to create their own unique fingerprints
[15]. Those fingerprints are then encoded in order construct a larger system-level fingerprint.
In this way the system level ID can be used to identify if one of the system’s individual
devices is no longer valid. Another approach utilizes memristor-based PUFs to create a very
lightweight security system [34]. The PUFs operate as a one time pad by generating a random
key each time one is needed for an encryption and decryption operation. A random response
is sent to the PUF and the associated response is used as the key. Other research efforts
have included using PUFs to create novel device authentication schemes for IoT-enabled
medical devices [39] and radio-frequency (RF) communication between nodes in a wireless
network [6]. The inclusion of PUFs has the potential to thus introduce security features into
an intra-vehicle network while minimizing any changes in its normal operation.

3.2 Controller Area Network (CAN)
The Controller Area Network (CAN) is a serial communication system that allows for simple
and efficient message passing between connected nodes without requiring a master controller
in the network [10]. CAN is most commonly used in vehicles to allow communication between
the embedded electronic control units (ECUs) without having to implement point to point
wiring between all possible communication paths. Figure 3 shows the format of a standard
CAN frame or message. A standard CAN frame has a very limited number of message fields.
The arbitration portion denotes the ID of the message. The control field shows the number
of bytes of data (0-8 bytes) being sent by the frame. CRC stands for cyclic redundancy check
and is an error correcting code used to check for errors in the transmission. ACK is used to
denote if a message was successfully received. Lastly, EOF denotes the end of the frame.

3.3 CAN Vulnerabilities
The CAN protocol was not originally designed to include much in the way of security
features. The key issues are messages are broadcast to all connected nodes, the data fields
are not encrypted, and there is no way to authenticate or even known who was responsible
for sending a given message. An attacker only has to gain access to the CAN bus in order
to carry out a wide arrange of attacks including eavesdropping, spoofing/impersonation,
and denial of service (DoS). Through eavesdropping an attacker would be able to monitor
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Fig. 3. CAN Frame

all communications and launch a replay attack by sending a duplicate of a previously
seen message [21]. Another possibility would be to reverse engineer what would be the
(likely manufacturer-specific) communication protocol used between nodes. Once that was
accomplished, an attacker would be able to send erroneous messages that the targeted ECUs
would interpret to be valid due to CAN’s inherent lack of authenticity. Researchers have
shown that attacks of this nature can be utilized to control different components of the
vehicle such as controlling the dashboard and shutting off the engine [37].

The CAN protocol also makes CAN very susceptible to DoS attacks. The CAN standard
guarantees that the message with the highest priority will be the first message to go through.
If the CAN bus is currently in the process of transmitting a message, it will stop that
transmission and begin to transmit the new message provided that new message has a higher
priority. An attacker only has to repeatedly transmit high priority messages for the CAN
protocol to guarantee that the messages from ECUs will never get a chance to send due to
having a lower priority [5].

3.4 Physically Unclonable Functions
Physically Unclonable Functions (PUFs) are a class of device that utilize internal variations
introduced by the manufacturing process to generate unique outputs for a given input. The
input to a PUF is denoted as a “challenge” and the output is known as a “response”. A
challenge and its associated response are collectively known as a challenge-response pair
(CRP). For a given challenge, the response produced by different PUFs should be unique
since each response is a direct manifestation of the unique physical properties of that specific
PUF. Furthermore, a PUF with a small number of CRPs, typically just one, is a weak PUF
and a PUF with a large number of CRPs is considered to be a strong PUF.

PUF designs are commonly based on transistor level process variations such as gate delays
[14] or the initial power-on value in memory cells [25]. Other researchers have explored
creating PUFs from larger components such as energy harvesters [28] and sensors [23].
The unique properties of PUFs make them an intriguing option as a low cost method for
implementing security related features such as key storage [11] or hardware obfuscation [36].

4 PROPOSED CAN SECURITY FRAMEWORK
The overall design of our proposed framework involves using a server within the network
to authenticate all nodes before allowing normal message passing operations to begin. The
proposed framework requires an LWC functions for encryption, decryption, and hashing.
Any LWC function can be used as long as it meets certain criteria. The LWC function used
for encryption and decryption must have a block size of 64 bits and a key size of no more
than 128-bits. For the LWC hash function, it must be able to generate 128-bit hashes.
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As an example, our proposed framework is described in terms of using PRESENT [4]
for encryption and PHOTON [13] for hashing. We use these as examples as they have
both been defined as International Organization for Standardization (ISO) standards for
LWC[16] [17]. Either LWC function could however be substituted with a different one which
meets the aforementioned criteria. The proposed framework also makes use of Elliptic Curve
Diffie-Hellman (ECDH) key exchange based on FourQ which has been shown to offer better
performance than other curves targeting the same level of security [9]. These cryptographic
algorithms will be discussed in more detail in Section 5. The proposed framework supports
80-bit or 128-bit encryption keys. For the sake of simplicity, the figures and tables in this
section assume 80-bit encryption keys.

Our proposed framework is not designed for use with only one specific PUF design. It
is assumed that the chosen PUF will be a weak PUF since the framework needs a given
PUF to always produce the same response each session. The keys are derived from the
PUF responses so the keys would change if the response changed. A strong PUF could be
an option if it was configured to operate as a weak PUF by always providing it the same
response. Topics related to the actual implementation of the PUF should be considered
outside the scope of this paper. This includes methods for improving the reliabilities of
PUFs such as error correcting codes and other schemes. Additional resources required for a
specific PUF implementation are likewise a direct result of the chosen PUF rather than our
proposed framework.

The proposed framework can be divided into the distinct operation phases of enrollment,
authentication, and normal operation. The authentication and normal operation phases will
occur every time the system is turned on. By contrast, enrollment would ideally only ever
occur once for the entire existence of the system. The rest of this section describes each of
the phases in greater detail.

4.1 Enrollment
This phase should only occur once, likely during the manufacturing phase. This should in
theory provide a secure environment for data to be hardcoded into the server and other
nodes. The purpose of the enrollment phase is to give each node a copy of the server’s public
key. This allows each node to ultimately derive a shared secret with the server that it can
use to securely communicate with the server during the authentication phase. The server
will likewise need to have a copy of the public key for every node. In addition, the server
needs to store a hash of the response from each node. The response hashes are 128 bits in
size which means future stages will only need 2 CAN frames to transmit the entire hash.

We use response hashes rather than raw responses for two main reason. The first reason is
it allows greater flexibility in choosing a type of PUF to use within the framework. Choosing
a PUF with a response larger than 128 bits won’t increase the number of CAN frames
required for a node to send it to the server. The other reason is this prevents sending the
PUF’s response outside of the node. Even though the responses would be encrypted, the
server would still need to do a comparison with the unencrypted response in order to validate
it. The raw response can be used to directly generate a secret key, while it is not possible to
do the same with a hash of the response. This removes the need to take the same security
precautions with storing and handling the response hash that you would need if you were
instead using the raw response.

During authentication a node will be considered valid if it is able to generate a response
whose hash matches the associated one stored by the server. Figure 4 provides a visualization
of what data will be stored within each entity at the end of the enrollment phase.
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Fig. 4. Post-Enrollment Stored Values

4.2 Authentication
The authentication phase should run every time the network is first powered on. Within
this phase the server will first validate the authenticity of each node in the system. Next
it will generate a session key and send a hashed copy to each node to use during normal
operation. Algorithm 1 describes the individual steps taken by a given node and Algorithm
2 describes the steps for the server. These steps assume 80-bit encryption keys. In addition,
the entire authentication process is illustrated in Figure 5.

Algorithm 1 Node Authentication Process
1: The node’s PUF generates a response R.
2: A 128-bit hash of the response is created HR. The response is also used as the node’s

secret key x by FourQ.
3: A shared secret SSec between the node and the server is generated using the node’s

private key x and the stored public key of the server PS.
4: The shared secret is hashed and truncated to produce an 80-bit key KSSec.
5: The node’s hashed response HR is encrypted using the hashed shared secret as the key

KSSec.
6: The encrypted response hash is sent to the server.
7: The node then waits for the server to respond with an encrypted session key.
8: The node decrypts the session key KSess using the hashed shared secret as the key

KSSec.
9: The list of valid nodes is extracted from the decrypted session key if the system was

configured to support it.
10: This session key KSess will later be used during normal operation to encrypt and decrypt

all messages within the network.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Fortifying Vehicular Security Through Low Overhead Physically Unclonable Functions 111:9

Algorithm 2 Server Authentication Process
1: The server’s PUF generates a response RS.
2: The response is used as the server’s secret key xS by FourQ.
3: A shared secret SSec between a given node and the server is generated using the server’s

private key xS and the stored public key of the node P.
4: The shared secret SSec is hashed and truncated to produce an 80-bit key KSSec.
5: The server waits to receive encrypted response hashes from each node.
6: The server decrypts the hashes using the hashed shared secret associated with that

specific node as the key KSSec.
7: The decrypted response hashes HR are validated by comparing them to previously

stored hashes.
8: The server generates a random session key KSess and concatenates it with either padding

or a bit mask representing valid nodes in the network.
9: The server encrypts a copy of the concatenated session key KSess for each node using

the hashed shared secret associated with that node as the key KSSec.
10: The server sends an encrypted session key to each node.

It is important to note that the shared secret between each node and the server is not
directly used as a key for encryption and decryption. We hash the shared secret to get
a shared key. This helps prevent key leakage and reduces the shared secret to the key
size required by the encryption algorithm. The nodes use the shared key to transmit their
response hashes and the server uses it to transmit the session keys.

The only messages sent during this phase are the encrypted response hashes and the
encrypted session keys. The encrypted response hashes are 128 bits in size which means it
will take 2 CAN frames to transmit the entire hash. Similarly, the encrypted session key
must be a multiple of 64 bits in order to minimize the amount of CAN frames required to
transmit it. This allows us to support key sizes of 80 and 128 bits. 80-bit keys would need to
be concatenated with 48 bits of padding. Alternatively, an 80-bit key could be concatenated
with a 48-bit wide bitmask that denotes the nodes that were successfully Authenticated.
Each bit would correspond to a specific node. Figure 6 provides an illustration of these
different modes of operation.

4.3 Normal Operation
This phase is analogous to the way a normal CAN bus operates and ultimately serves the
same purpose. The major difference is all transmitted data must be encrypted before it is
sent over the bus. Once nodes have have been authenticated by the server and received
a session key, the system can transition to normal communication between nodes in the
network. The session key is used to encrypt the data field of a packet before sending it across
the CAN bus to another node. That other node can then use its own copy of the session key
to decrypt the data and then respond accordingly. Figure 7 shows the general flow for one
node communicating with another node.

5 DESIGN AND ANALYSIS OF PROPOSED FRAMEWORK
By deriving keys from physically unclonable functions (PUFs), we avoid the need to use
costly secure nonvolatile memory for key storage. Instead, the keys can be generated as
needed during each authentication phase. This means an attacker would have to obtain
physical access to the PUF to recover its response and associated key pair. As we will explain,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Labrado, et al.

Fig. 5. Authentication Process

the information that must be persistently stored between sessions does not necessarily need
to be kept secret and that allows us to save costs by not requiring secure nonvolatile memory
in the nodes.

The public keys can be stored in unsecured memory since they require a separate private
key to form a shared secret. The private key is generated whenever it is needed and deriving
a private key from its associated public key would require successfully breaking the elliptic
curve key generation cryptographic algorithm. The hashed responses can also be stored in
unsecured memory since the server expects any received hashed responses to be encrypted
with the appropriate shared secret that it is assumed an attacker is not able to obtain.
Furthermore, since hash functions are considered to be one-way it should not be possible to
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(a) 80-bit Session Key

(b) 48-bit Valid Bitmask and 80-bit Session Key

(c) 128-bit Session Key

Fig. 6. Options for Encrypted Session Key Packets

Fig. 7. Normal Communication Between Two Nodes

recover the original input response that produced the hash and then use that response to
generate its associated private and public keys.

During each new session, the server generates a session key that will be used by all
ECUs during normal communication. Depending on the mode of operation, that key can
be concatenated with a bit mask denoting which nodes are valid. During authentication
a server with 𝑛 ECUs will receive 𝑛 hashed responses and then only have to transmit 𝑛
total copies of the generated session key, one for each ECU. Therefore, the number of frames
that must be sent in our proposed framework scales linearly as the number of ECUs in the
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system increases. Furthermore, the hashed responses and session key payloads can each
be transmitted in only 2 frames. This means that during the authentication phase of our
proposed framework, a network with 𝑛 ECUs will require the transmission of 4𝑛 total frames
to complete the authentication phase.

The overhead in terms of frames required by the proposed framework is shown in Table
1. The enrollment phase is omitted since it would likely not require sending any messages
over the CAN bus and would ideally only ever run once. A partial repeat of the enrollment
phase would only need to occur when PUFs are added and/or removed from the system, e.g.
completely replacing a malfunctioning node. The enrollment phase is otherwise completely
implementation dependent and occurs outside of the flow of operations for the system.
During normal operation, our proposed framework operates exactly the same as the standard
CAN protocol. The same number of messages are required to transmit the same amount
of data. The only real difference is the data contained within the data field of the message
is now encrypted. The cryptographic operations will of course introduce some additional
overhead, but that will be highly dependent upon the chosen algorithms and the underlying
hardware. Special purpose hardware for example could greatly speed up calculations or
certain cryptosystems may perform better on the specific ECUs used by a given manufacturer.

5.1 Threat Mitigation
The major threat that will be directly mitigated is eavesdropping. Currently an attacker with
access to the CAN bus can see all messages that are transmitted. Our proposed framework
counteracts this by encrypting the actual data that is transmitted. The only potentially
useful information that could then be used by an attacker is the destination IDs of the
messages.

Other notable attacks are data tampering and impersonation attacks. As the name
suggests, data tampering attacks occur when an attacker is able to successfully modify a
message without the sender or receiver being able to detect that the message has been
changed. Impersonation attacks are where an attacker impersonates another ECU and sends
messages as if they were that ECU. These attacks are especially concerning because they
can allow an attacker to effectively control a vehicle. The CAN protocol has no built in
mechanism for identifying the original sender of any message. An attacker for example could
send messages to engage the brakes and the brakes would activate as if the associated ECUs
had received legitimate commands. Our proposed framework also provides some protection
against these sorts of attacks. The first step of being able to forge messages is to understand
the actual message format. Doing so requires an attacker to reverse engineer the message
protocol by monitoring the network. If the actual message format is not already known by
an attacker, then it will be difficult for them to reverse engineer it since the data itself will
be encrypted within our framework.

In the event an attacker does know the message format, it will still be difficult for them
to create erroneous messages to produce specific outcomes like applying the brakes. All
messages are encrypted with a session key so an attacker would need to have a copy of that
key in order to properly encrypt their message. Otherwise, their message will get mangled
when the receiving node attempts to decrypt it. This should force the attacker to resort to
a replay attack in which they capture a message and then repeat it to produce a known
result. This is much more time consuming since the attacker would have to try to monitor
the entire network traffic and somehow correlate a specific message payload to a specific ID
with producing a desired response in the vehicle. Since the session key is randomly generated
each time, the encrypted form of a given message will change each time the session key
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changes. The attacker would then have to repeat the entire process every time a new session
begins. This prevents an attacker from simply building a library of messages across several
sessions since the messages will change each time.

The types of security threats that our framework does not offer much protection against
are those that do not require reading and/or writing specific data values. Attacks of this
nature succeed by merely transmitting a message regardless of its actual content. One notable
example of this type of attack is a Denial of Service (DoS) attack. A DoS attack would
seek to disable a vehicle by flooding the CAN bus with high priority messages. The higher
priority means that these erroneous messages will get delivered before the valid, yet lower
priority messages required for normal operation. The valid messages never get delivered and
the vehicle is thus unable to function. Certain forms of data tampering and impersonation
attacks would also fall under this type of attack. The goal of these attacks would not be
producing a specific outcome such as controlling the vehicle’s movement. Instead, they
would seek to cause general havoc by either repeating previously seen packets or sending
what would amount to junk data to ECUs. The attacker would have no notion of what the
outcome will be. It would instead be completely up to chance in terms of how the vehicle
will actually respond. As such, the possible response could range in severity from effectively
ignoring the attacker’s messages, all of the way to actually causing some sort of accident.

5.2 Cryptographic Algorithms
The performance of current cryptographic standards is not always suitable for use in
resource constrained environments. Lightweight cryptography (LWC) seeks to address this
by specifically designing cryptographic algorithms for resource constrained environments
[32]. Although the National Institute of Standards and Technology (NIST) is currently in
the process of setting LWC standards, the International Organization for Standardization
(ISO) has published LWC standards.

Our adherence to lightweight cryptographic algorithms [16] [17] should provide other
performance benefits and potentially reduce the cost of implementation. The amount of
computation required to perform basic cryptographic operations such as encryption, key
generation, etc., is reduced in our proposed framework compared to existing solutions which
utilize larger algorithms such as AES. This has the added benefit of potentially simplifying
any dedicated hardware that is solely designed to perform those operations. Furthermore,
our design does not require any form of secure nonvolatile memory for key storage as the
use of a PUF allows all keys to be generated as needed.

5.2.1 ECDH based on FourQ. For key exchange we used Elliptic Curve Diffie-Hellman
(ECDH) based on FourQ. FourQ is an elliptic curve which targets the 128-bit security level
[9]. Although other curves targeting the 128-bit security level would also work, FourQ has
been shown to be faster than other popular 128-bit security elliptic curves such as NIST
P-256 and Curve25519 in both key generation and secret exchange [9] [2].

5.2.2 Encryption and Decryption. The use of a block cipher which has a block size of 64 bits
means that during regular communication, the number of CAN frames that must be used to
send encrypted data will remain the same as the number that must be used to send normal
unencrypted data. Any additional overhead introduced by the proposed framework during
normal operation would thus be solely limited to the encryption and decryption operations
performed by each node.
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5.2.3 Hash Function. It was important to choose a hash function that produced 128-bit
hashes as it would allow us to use hashes as encryption keys. The other major benefit is
hashed responses can be sent in just 2 CAN frames.

5.3 Server Capabilities
It is assumed that the server will be secure and have the capability to securely generate
a random session key for each session. It should not be possible to add, remove, and/or
modify nodes and the public keys and hashed responses associated with them except during
the enrollment phase in a trusted environment. The server also has the potential to act
as a monitor of sorts during the authentication phase. It could phase certain anomalies
as malicious and either lock out the rest of the authentication phase, or notify a more
centralized security system so that it may act accordingly. The CAN protocol does not show
the origin of messages being transmitted. However, it can still detect situations such as
multiple authentication attempts for a single node, an incorrect number of nodes attempting
to authenticate, or false messages being transmitted before authentication has ended.

6 COMPARISON TO EXISTING DESIGNS
The security holes present in the CAN protocol have led to led researchers to propose a
variety of different possible solutions. These approaches tend to involve adding security
features through either changes to the base CAN protocol itself [12] [30] [1] or proposing
frameworks around the existing protocol (such the one we are proposing) so that the CAN
protocol itself remains the same [38] [20] [31]. To the best of our knowledge, there are not
many proposed security solutions that explicitly integrate PUFs as a core component of the
system. As such we are not considering systems in which a PUF could replace an existing
component such as using a PUF to remove the need for secure nonvolatile memory [11].

One example PUF-based solution is the work from [1]. That work uses PUFs embedded in
each ECU to validate the ECU before sending a message to another ECU. All communication
between ECUs is routed through a reference monitor which is responsible for validating the
identity of the ECU during each communication before forwarding the associated message
to its intended recipient. We are not considering this work in our comparisons due to the
fact that the CAN bus has been effectively replaced by the reference monitor.

A separate work also uses a PUF and server based approach in which the server and each
ECU have an integrated PUF [31]. During authentication, the server and each ECU generate
ECDH key pairs from responses generated by each PUF. Every ECU generates a ECDH
key exchange shared secret with the server and transmits an encrypted copy of its public
key. AES-128 is used for encryption the keys. The public key is transmitted across two CAN
frames since AES requires block sizes of 128 bits and the data field in a single CAN frame
is only 64 bits. The server compares the received public keys with the public keys that it
stored during an enrollment phase to validate each ECU. The server then sends encrypted
copies of each valid public key (2 frames each) to each valid ECU along with a third frame
denoting which ECU is associated with that public key. The ECUs use the received public
keys to generate a shared secrets with every other valid node. The ECUs can then encrypt
data being sent to any ECU with a unique key that is only available to the sending and
receiving ECUs. Like before, two CAN frames must be sent for every data transmission to
comply with the block size of AES-128.

There are certain scalability, functionality, and security concerns present in the existing
framework that our proposed solution is able to overcome. The scalability issue lies with the
authentication phase. Each valid ECU must receive encrypted copies of the public keys for all
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Table 1. Required CAN Frames for 𝑛 ECU System

Operation Phase [31] Proposed

Authentication 3𝑛2 + 2𝑛 4𝑛

Normal Communication 2 1

other valid nodes. For a system with 𝑛 ECUs, a single ECU will transmit its public key to the
server and receive an encrypted copy of each valid public key along with a message indicating
the node ID associated with each key. This means the server must overall transmit 𝑛2 public
keys and therefore the number of public keys that must be sent will scale quadratically as
the number of ECUs increases. If you consider that each public key sent by an ECU requires
2 CAN frames and each public key transmitted by the server requires 3 frames, then the
total number of frames required for authentication is 3𝑛2 + 2𝑛. In addition, the fact that
there is a unique shared secret between every pair of ECUs prevents broadcast messages.
An ECU must separately encrypt and send duplicate messages to each intended ECU.

As stated in the previous section, our proposed framework will complete authentication
after sending 4𝑛 frames for a system containing 𝑛 ECUs. This means the number of required
frames scales linearly with the number of ECUs in the system. The fact that there is a
single session key shared by all of the nodes mean that our proposed framework supports
messages having multiple intended recipients. The use of PRESENT for encryption allows
an entire encrypted message to fit within the data field of a single CAN frame during normal
communication between ECUs. Table 1 shows a comparison between [31] and our proposed
framework in terms of the total number of CAN frames that must be sent during the different
phases of operation within a system containing 𝑛 ECUs. The table shows that our approach
scales much better for larger systems. For example, a system with 20 ECUs would require
the transmission of 1240 frames under the existing framework while our proposed framework
would only require 80.

This scaling issue becomes even more important when you consider the amount of time it
actually takes to transmit a CAN frame. CAN has both high-speed and low-speed versions.
High-speed CAN can transmit data at speeds of up to 1 Mb/s while low-speed can transmit
at speeds of up to 125 kb/s. Standard CAN frames are 108 bits long. There is also an
extended version which is 128 bits. Furthermore, CAN requires at least 3 bits of spacing
between messages. This effectively means that standard and extended frames require the
transmission of 111 bits and 131 bits, respectively. Therefore, Low-Speed CAN can transmit
a standard and extended frames in 896 𝜇s and 1048 𝜇s, respectively. High-Speed CAN can
transmit the frames in 112 𝜇s and 131 𝜇s, respectively.

Figures 8 and 9 show how long the Authentication would take as the number of nodes
increases. Figure 8 assumes the system is using standard CAN frames and Figure 9 assumes
extended CAN frames. For a system with 20 ECUs, our proposed framework will complete
authentication in only 6.5% of the time that it would take the existing framework. That
percentage will continue to decrease as the number of ECUs increases. Table 2 contains a
comparison of the time required to transmit all of the CAN frames required to complete
Authentication with in systems of various sizes. It is important to highlight the amount
of time required for Authentication since it represents extra overhead that is not already
present within vehicles. Implementing these frameworks would require introducing a period
of time that the vehicle is unresponsive immediately after it starts. This period of time might
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Table 2. Time Required to Transmit the Frames Required for Authentiction

Speed, Frame Framework Number of ECUs
5 10 15 20 25

High, Standard [31] 9.52 ms 35.84 ms 78.96 ms 138.88 ms 215.6 ms
Proposed 2.24 ms 4.48 ms 6.72 ms 8.96 ms 11.2 ms

High, Extended [31] 11.134 ms 41.92 ms 92.36 ms 162.44 ms 252.18 ms
Proposed 2.62 ms 5.24 ms 7.86 ms 10.48 ms 13.1 ms

Low, Standard [31] 76.16 ms 286.72 ms 631.68 ms 1,111.04 ms 1,724.8 ms
Proposed 17.92 ms 35.84 ms 53.76 ms 71.68 ms 89.6 ms

Low, Extended [31] 89.08 ms 335.36 ms 738.84 ms 1,299.52 ms 2,017.4 ms
Proposed 20.96 ms 41.92 ms 62.88 ms 83.84 ms 104.8 ms

be negligible for systems with a very small number of ECUs, but it will become increasingly
pronounced as the number of ECUs increases. Most importantly, the superior scaling of
our proposed framework guarantees that this dead period of operation will remain nearly
imperceptible for much larger systems compared to the existing approach.

0 5 10 15 20 25

ECUs

0

0.25

0.5

0.75

1

1.25

1.5

T
i
m
e
 
(
s
)

Time Required for Authentication

(Standard Frames)

Existing [27], High-speed CAN

Proposed, High-speed CAN

Existing [27], Low-speed CAN

Proposed, Low-speed CAN

Fig. 8. Authentication Phase Overhead Comparison (Standard Frames)

NIST guidelines state that for symmetric keys of size 128 bits, the elliptic curve key size
to provide equivalent security is 256 bits [3]. Per the NIST specifications, security for the
128-bit ECDH key used in [31] would actually be equivalent to a symmetric key that is
less than 80 bits. The normal security strength of AES-128 is potentially undercut since
the shared secret used as the encryption key is derived from the 128-bit ECDH keys. This
could present a vulnerability that could be exploited by an attacker. In our approach, the
encryption key used during normal operation is a session key that the server randomly
generates each time. During enrollment, we are able to make use of 256-bit ECDH FourQ
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shared secrets by hashing them to 80-bit or 128-bit keys. In this way, the security of the
encryption function is not reduced by the key generation.

7 DISCUSSION AND CONCLUDING REMARKS
In this paper we present a novel CAN security framework based on PUF. The proposed
framework offers improvements over previous PUF-based frameworks in terms of both
scalability and the message overhead associated with normal operation. The savings in
overhead results in our proposed framework being able to send the number of CAN frames
required for the Authentication of a system with 20 nodes in only 6.5% of the time that it
takes the existing framework. Normal message passing in our proposed framework requires
only a single CAN frame to be sent while the existing approach requires two frames per
message.

Our framework merely uses PRESENT and PHOTON as examples of LWC functions.
PRESENT could be substituted for an alternative with a block size of 64-bits and a key
size of at most 128-bits. PHOTON could be replaced by a different lightweight hash that
is capable of producing a 128-bit output. Ongoing efforts in the development of LWCs,
including NIST’s efforts to standardize LWC, will likely result in new functions that offer
better performance than what is currently available. Depending on the implementation focus,
it might be preferable to choose an LWC that was optimized for hardware implementation
rather than software implementation or vice-versa. One interesting avenue for future research
would be a comprehensive study on the performance of various LWCs when implemented in
both software for various resource-constrained platforms and in hardware such as FPGAs
and ASICs.
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