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Abstract—An accurate and reliable technique to predict
rechargeable battery health proves helpful in battery-operated,
low-resourced industrial IoT devices. The existing data-driven
battery health prediction techniques often require a compara-
tively large amount of computational power for predicting the
State of Health (SOH) and the Remaining Useful Life (RUL)
due to most methods being feature-heavy. Further, there are
very limited works for battery RUL prediction in IoT nodes.
To address this issue, this paper presents a unique IoT-based
sensor node framework, iThing, to predict the on-board battery
SOH and RUL with the least computational and memory load.
The iThing automatically extracts the voltage and time-based
health indicators, which is then fed to the random learning
algorithm-based methods with good learning performance for
SOH and RUL prediction. The proposed Extreme Learning
Machine (ELM) network provides SOH prediction with 0.0054
Root Mean Square Error (RMSE), and 0.0024 Mean Absolute
Error (MAE). Random Vector Functional Link (RVFL) neural
network predicted the RUL with 0.0282 RMSE and 0.021 MAE.
The proposed method has been tested on three different battery
datasets with varying charging policies with high accuracy. The
models have been deployed successfully on an experimental hard-
ware setup, proving its eligibility for real-time IIoT applications.

Index Terms—Industrial IoT, Battery, SOH, RUL, ELM,
RVFL.

I. INTRODUCTION

IN the present time, smart nodes attached to the physi-
cal objects that are capable of sensing, processing, and

communication and are connected to the internet comprise
the Internet-of-Things (IoT) [1]. When the IoT is applied to
industrial systems for improved reliability, security, robustness,
and timeliness, it is termed the Industrial IoT, or IIoT [2]. In an
IoT network, the sensor node is an important part, which has
four main components - the sensor itself for data collection,
the transceiver for data transfer to/from a local system or the
cloud, the microcontroller for controlling both the sensor and
the transceiver, and the battery for powering the entire unit.

Aparna Sinha is with the Department of Electronics & Communication
Engineering, International Institute of Information Technology Naya Raipur;
e-mail: aparna.sinha@ieee.org.

Debanjan Das is with the Department of Electronics & Communication
Engineering, International Institute of Information Technology Naya Raipur;
e-mail: debanjan@iiitnr.edu.in.

Venkanna Udutalapally is with the Department of Computer Science &
Engineering, International Institute of Information Technology Naya Raipur;
e-mail: venkannau@iiitnr.edu.in.

Saraju P. Mohanty is with the Department of Computer Science & Engi-
neering, University of North Texas; e-mail: saraju.mohanty@unt.edu.

The constant data collected and computed helps in various
monitoring tasks in our environment.

The real-world deployment of IoT has given rise to the
challenge of monitoring the health and performance of the
sensor nodes themselves [3]. If one or more components of
the sensor node malfunction, then the faulty data may refer to
a fault in the associated system. Like any other component,
the performance of the battery degrades over time. Hence, in
this paper, we will focus on battery health, as the death of
the battery leads to the complete failure of the sensor node.
For efficient, sustainable, and uninterrupted service, a resilient
IIoT-based solution has been conceptualized to communicate
the battery health data, as shown in Fig. 1.
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Fig. 1. A general view of the proposed resilient IIoT-based solution.

Rechargeable Lithium-ion batteries are extensively used in
Electric Vehicles, Mobile Phones and Laptops, IoT devices,
and many others as the power source, because they have
higher energy density, lower self-discharge, and prolonged
lifetime compared to other battery types [4]. Battery-powered
IoT devices are mainly used to monitor the performance
of various industrial systems whose uptime and functioning
are critical. Recently, energy harvesters have been connected
with battery systems to enhance the lifetime of the respective
sensor nodes. However, Li-ion batteries degrade over time due
to the formation of Solid Electrolyte Interphase film at the
carbonaceous anode material [5], and the battery loses capacity
and gains internal resistance. Hence, the in-built system should
be able to accurately and reliably predict the State of Health
(SOH) and the Remaining Useful Life (RUL) of a battery to
prevent over-discharge, overcharge [6] and help in the timely
replacement of the battery to avoid the failure of vital IoT
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instruments. In general, the SOH measures the battery’s ability
to store and deliver the electrical energy. The RUL is described
as the remaining cycles or time before the battery reaches its
End of Life (EOL), i.e., the time needed to reach 70% or 80%
of the SOH [7]. The SOH and RUL help in the short-term and
long-term battery life prediction, respectively.

With rapid development in the field of Machine Learning
(ML), Deep Learning (DL), and Artificial Intelligence (AI),
data-driven methods have become popular as they don’t re-
quire any prior internal knowledge of the system. For battery
health prediction using data-driven methods, the data genera-
tion is also challenging, as Li-ion Battery has thousands of
cycles, which causes reliability researchers to take several
months or years before failure testing completes. Another
major challenge is the extraction of suitable Health Indicators
(HIs) having a high correlation with the SOH and RUL values
and reduce the amount of input data in the prediction model
to a large extent. Finally, a suitable model must be chosen
for battery health prediction that is lightweight and easy to
implement using edge-AI for real-time predictions and reduce
the latency [8] [9]. To overcome these issues, a unique IoT-
based framework, iThing, has been proposed that automatically
extracts HIs from the charging cycle voltage data and predicts
the battery SOH and RUL using random learning algorithms.

II. RELATED WORKS AND RESEARCH GAP

In general, there are three different methods for bat-
tery health estimation: Experimental, Model-based, and Data-
driven methods. However, the experimental methods [10], and
model-based methods [11] [12] are time-consuming, have very
complex mathematical structures, and need vast knowledge of
the complex internal battery chemistry for precise prediction.
Hence, they are not suitable for online IoT applications.

Nowadays, the data-driven methods are becoming very
popular, since they are non-parametric and do not depend on
any prior knowledge of the internal working of the battery. For
effective SOH and RUL prediction of battery, the extraction of
proper HIs is important. In this regard, a NARXRNN model is
used for battery SOH and RUL prediction by [13]. Similarly, a
Temporal Convolutional Network (TCN) was used in a battery
SOH and RUL prediction model, which is capable of capturing
local regeneration of cells [14]. A transfer learning-based
long short-term memory (TL-LSTM) neural network was used
for battery RUL prediction for varying operating conditions
[15]. A battery RUL prediction algorithm using Conditional
Variational Autoencoders - Particle Filters (CVAE-PF) was
proposed in [16]. All these works used raw data as input,
and the model automatically extracted the HIs. Another work
where the battery RUL estimation was performed successfully
was by using Recurrent Neural Networks (RNN) and Genetic
Algorithm (GA) [17]. However, the neural network-based
methods are complex with multiple hidden layers and are
difficult to implement in edge computing. The extraction of
suitable HIs greatly reduces the input data for the prediction
models and decreases the computational and storage load. An
LSTM-based model has been used for battery health prognosis,
for which complete ensemble empirical mode decomposition

TABLE I
COMPARISON OF EXISTING SOLUTIONS WITH ITHING

Related
works

HI ex-
traction

Edge-
based
decisions

Computation
power

Real-time
predic-
tion

Bamati et al.
[13]

No Yes Low Yes

Zhou et al.
[14]

No No High Yes

Pan et al.
[15]

No No High Yes

Jiao et al.
[16]

No No High No

Catelani et
al. [17]

No No High Yes

Cui et al.
[18]

Yes No High No

Hu et al. [5] Yes No Medium No
Kim et al.
[19]

Yes No High Yes

Gou et al. [7] Yes No Medium Yes
Greenbank
et al. [20]

Yes No Medium No

Sanz-
Gorrachategui
et al. [21]

Yes No Medium Yes

Liu et al.
[22]

Yes No Medium No

Current Pa-
per: iThing

Yes Yes Low Yes

with adaptive noise (CEEMDAN) is used to generate the in-
trinsic mode functions [18]. However, this method is complex
and difficult for real-time implementation in edge devices.
SOH prediction using fusion-based feature selection method
and GPR was implemented by Hu et al. [5]. Though this
method was effective, the fusion-based feature selection is
time-consuming and unsuitable for real-time online applica-
tions. A GPR-based method for battery health prediction by
extracting the HIs from the different voltage peaks obtained
during multi-stage battery charging is explained in [23], but
this method is effective only for multi-stage battery charging
policy. In [21], two novel HIs namely, Capacitance peak and
Voltage at capacitance peak are extracted from the disturbance
occurring in the low voltage part of the battery discharge
cycle. But, these are noisy features and cannot be effectively
extracted from the entire battery lifecycle or from different
battery charging policies. A stacked LSTM was utilized for
SOH prediction of battery in [19], in which the HIs were
extracted from the discharge cycle of the battery. But, the
discharge cycle is largely dependent on the load profiles and
is not reliable for health prediction. A hybrid ensemble data-
driven method can be used for SOH and RUL prediction
of Li-ion batteries by Gou et al. [7]. This paper used the
duration of equal charging voltage difference as the extracted
HIs, but the voltage ranges were chosen manually. Automatic
feature extraction and SOH prediction were performed using
the percentile values of all the measured parameters as the
ranges for HI extraction in [20]. Although this method was
effective, the extraction of a large number of features made
the process time-consuming and unsuitable for real-time online
applications. A probabilistic Monotonic Echo State Network
(MONESN)-based RUL estimation method has been proposed
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by Liu et al. [22], where both direct HI (battery capacity) and
indirect HI (time interval of equal discharging voltage dif-
ference/TIEDVD) are extracted for battery health prediction.
However, the direct HI is difficult to extract and implement in
real-time battery health predictions.

The comparative summary of the related works with the
proposed iThing method is given in Table I. Although all
these discussed methods have their merits, none of them are
made with IoT devices in mind, since they have complex
mathematical models, require high computational power, or
other shortcomings mentioned previously. To overcome these
shortcomings, a random learning-based method with automatic
HI extraction has been proposed to predict SOH and RUL
efficiently.

A. Novel Contributions of iThing

The major contributions of this paper are enumerated as
follows:

• As of authors knowledge, this is one of the first kind
of work focusing on the rechargeable battery health
prediction in IoT sensor nodes using an optimised random
learning algorithm-based framework, iThing. The random
learning algorithms have a fast learning speed that aids
in increasing the implementation capability.

• The presented TIECVD algorithm automatically extracts
the health indicators (HIs), having high correlation with
the calculated SOH and RUL, from only the battery’s
charging cycle.

• The ELM network is designed to predict the SOH of the
three selected batteries with an average RMSE of 0.0054,
which is lower compared to other existing advanced mod-
els. We affirmed the model’s efficacy for RUL prediction
with average RMSE value of 0.0282 for three battery sets,
irrespective of their charging policies.

• The proposed iThing solution uses edge-as-a-service for
real-time prediction of battery health. Only the predicted
health data is transmitted to the cloud. This decreases the
transmitter power requirement and makes it suitable to be
applied in low-powered IoT devices. Further, the training
dataset is reduced by more than 99%, thus reducing the
storage requirement and computational complexity of the
prognosis models.

• The knee-point identification from the predicted SOH
of the battery enables alerting the authorities that the
battery is approaching the EOL rapidly. This enhances
the reliability of the remotely operated IoT sensor nodes.

• The hardware implementation proves the suitability of the
iThing solution for on-board health prediction of battery
in IoT sensor nodes.

III. PROPOSED METHODOLOGY

A. iThing Architecture

A unique hardware component called iThing has been intro-
duced for Sustainable IoT for Battery Health Self-monitoring
in Sensor Nodes. The proposed architecture for iThing is
shown in Fig. 2. The battery is responsible for the power
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Fig. 2. Our vision of iThing - Battery health self-monitoring for sustainable
IoT.

supply to the various components of the sensor node, like
sensors, controller, and transmitter. The Battery Management
System is responsible for recharging the battery in every cycle.

The voltage sensor collects the time and voltage information
and sends it to the time interval of equal charging voltage
difference (TIECVD) extraction unit responsible for HI ex-
traction. The extracted HIs are then sent to the SOH and RUL
Prediction Unit, where the ELM and RVFL algorithms are
used to predict the SOH and RUL, respectively. Therefore,
the proposed iThing utilizes edge-as-a-service to analyze the
HIs of battery, perform edge computing and provides the
necessary services for sustainable IoT applications, along with
the normal sensor node functionalities. The entire calculation
is done in the Sensor Node itself with minimal external
interference, and the Internal Health Data is then transmitted
to the cloud. This process flow is shown in Fig. 3. The
external sensors responsible for measuring the environmental
parameters are also collected and sent to the cloud for further
processing and calculation.
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Fig. 3. Proposed process flow of iThing for SOH and RUL prediction of a
Li-ion battery.

B. Battery Health Indicator Extraction

Typically, the reduction of capacitance and the increase of
the internal resistance are the two direct HIs of a Li-ion battery.
The battery SOH is the ratio of measured charge capacity
(Ccurr) to the nominal charge capacity (Cnomi) in Ah, as given
in Eq. 1:

SOH =
Ccurr

Cnomi
(1)

When a battery undergoes multiple charge-discharge cycles,
the maximum measured charge capacity of the battery at the
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end of the charging cycle invariably decreases compared to the
previous cycle as the maximum charging capacity decreases.
Due to the decrease in charge capacity, the calculated SOH
value also decreases proportionally. When the battery capacity
decreases by 20-30%, it reaches the EOL threshold [23].
After that, the battery needs to be replaced as it becomes an
unreliable power source.
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Fig. 4. (a) Voltage-time curve for one charging cycle indicating the TIECVDs,
(b) Histogram, and (c) Cumulative Histogram, over the entire voltage data
population.

Although the direct HIs are very effective for accurate SOH
and RUL prediction of the battery, they are challenging to
implement for online applications [7]. Hence, indirect HIs,
such as current and voltage, are widely utilized for battery
health prediction in online IoT applications. The time duration
of equal terminal voltage interval during the battery’s charge-
discharge cycle can be considered a vital HI. However, since
the discharging cycle varies with varying load profiles in
highly varying online uses, the time duration of equal terminal
voltage interval during the charging cycle is considered a better
HI for SOH assessment. This duration gradually decreases
with increasing cycle number and may be described as the time
interval of an equal charging voltage difference (TIECVD), as
given in Eq 2:

TIECVD(Vmin, Vmax) = tVmax − tVmin , (2)

where Vmin and Vmax are the minimum and maximum limits
of the selected charging voltage interval respectively. The time
elapsed when the battery’s terminal voltage becomes Vmin

and Vmax are tVmax
and tVmin

respectively. Fig. 4 (a) depicts
the voltage-time curve during the charging cycle indicating
the extracted TIECVD features. For the entire population of
voltage data given in the dataset, histogram and cumulative
histogram were generated, as shown in Fig. 4 (b)-(c).

The values of Vmin and Vmax were determined from
the cumulative histogram of the voltage values. The voltage
values correlating to the 33rd, 67th and 99th percentiles were
evaluated as 3.0549 V, 3.4715 V and 3.6001 V respectively.
The time spent between these voltage values during the battery
charging cycle is taken as the TIECVD (tV) features, as given
in Table II. The pseudo-code for the proposed HI extraction
algorithm is given in Algorithm 1.

TABLE II
THE TIECVD FEATURES EXTRACTED FROM THE VOLTAGE DATA DURING

THE CHARGING CYCLE OF THE BATTERY

Percentile Range Voltage Range Notation
33rd to 67th 3.0549 V to 3.4715 V tV (1,2)

33rd to 99th 3.0549 V to 3.6001 V tV (1,3)

67th to 99th 3.4715 V to 3.6001 V tV (2,3)

Algorithm 1 : TIECVD Extraction
Input: 1. V (v1, v2, ..., vp) {Charging Voltage data}
Input: 2. t(t1, t2, ..., tp) {Time data in charging cycle}

1: Calculate 33rd, 66th and 99th percentiles of V as vp−33,
vp−67 and vp−99 respectively

2: for i = 1 to p do
3: if V (i) > vp−33 then
4: tp−33 = t(i)
5: break
6: end if
7: end for
8: for j = i to p do
9: if V (j) > vp−67 then

10: tp−67 = t(j)
11: break
12: end if
13: end for
14: for k = j to p do
15: if V (k) > vp−99 then
16: tp−99 = t(k)
17: break
18: end if
19: end for
20: tV (1,2) = tp−67 - tp−33

21: tV (1,3) = tp−99 - tp−33

22: tV (2,3) = tp−99 - tp−67

Output: tV (1,2), tV (1,3), tV (2,3) {Extracted TIECVDs}

C. Battery SOH Prediction

The extracted HIs of the Li-ion battery are used for the SOH
prediction. For this purpose, the Extreme Learning Machine
(ELM) is used. It is an effective and lightweight training
algorithm for single hidden layer feed-forward neural networks
(SLFNs). Since the ELM does not employ a back-propagation
algorithm, the weights between the input and hidden layer
are assigned randomly; only the weights between the hidden
and output layer are learned analytically [24]. The algorithm
has a faster learning speed as it avoids iterations. Further, the
presence of random hidden nodes leads to good generalization
capability. The structure of the ELM model used for battery
SOH prediction in this paper is given in Fig. 5 (a).

Let us consider that the weight between input
and hidden layer is represented by ω, while b
stands for the bias of the hidden layer and β
denotes the output weight. A training set is given as
S = (ai, ri)|ai = (ai1, ..., ain)

T ϵRn, ri = (ri1, ..., rin)
T ϵRm,

where ai and ri represent the input value and target
respectively. Then, the output z of ELM model having N̂
hidden neurons can be given by:

N̂∑
k=1

βkgE(ωkaj + bk) = zj , j = 1, 2, ..., N, (3)

where gE(x) denotes the activation function of the hidden
layer. Here relu has been taken as the activation function of
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the ELM model used for battery SOH prediction. The formula
given in Eq. 3 can be abbreviated as:

Hβ = T, (4)

where H and T represent the hidden layer output matrix and
the target matrix respectively. Therefore, from Eq. 4, the output
weights can be evaluated as:

β = H†T, (5)

where H† denotes the Moore–Penrose generalized inverse of
the matrix H. Hence, the primary aim of the ELM training
is not only to find the minimum training error but also to
determine the least norm of the output weights. It has been
quantitatively proved that the learning speed of ELM is a
thousand times faster and has much less computational burden
compared to the traditional models [7]. This has motivated
the authors to use the ELM network for SOH prediction of
the Li-ion batteries in the current paper. A keras-like numpy
implementation of ELM has been performed in this paper
using the python libraries such as Numpy and Tensorflow [25].
The ELM model used in this paper for battery SOH prediction
employs 100 hidden nodes and ReLu activation function, and
the cost function (C) is taken as 1 (default value). The three
extracted HIs, tV (1,2), tV (1,3) and tV (2,3), are taken as inputs
to the ELM network.
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Fig. 5. The structures of (a) ELM and (b) RVFL used for battery SOH and
RUL prediction, respectively.

D. Battery RUL Prediction

The extracted HIs and the SOH predicted from the ELM
network are used for the RUL prediction of the Li-ion battery.
The Random Vector Functional Link (RVFL) neural network
was employed for this purpose. The RVFL is also a type of
SLFN where the input and output layers are connected directly.
This is the significant difference between the ELM and RVFL
networks. Fig. 5 (b) illustrates the structure of the RVFL-based
RUL prediction model.

Let us consider the input data X = [x1, x2, ..., xn] is mapped
to the hidden layer using the non-linear activation function
gR(w

T
j X + bj), where wj and bj are the weight and bias of

the jth hidden node respectively. For N input nodes and J
hidden nodes, the RVFL network is represented by [7]:

f(X) =

J∑
j=1

βjgR(w
T
j X + bj) +

J+N∑
j=J+1

βjxj , (6)

where βj represents the jth weight terms. The least-squares
method-based optimization of hidden and output layer weights

reduces the output error of the trained RVFL model, using the
equation:

minϵ2 =
1

2P

P∑
p=1

(t(p) −Btd(p))2, (7)

where P is the number of training samples with index (p),
Bt contains (J + N ) weight values and d represents the
output nodes vector. Random sampling from the uniform
distribution [-1, 1] gives the weights between the input and
hidden layers in RVFL. The RVFL network reportedly shows
much less computation time than the traditional methods,
which persuaded the authors to use it for RUL prediction.
In this paper, the RVFL network uses 100 hidden nodes and
ReLu activation function for accurate RUL prediction.Apart
from the three extracted TIECVD features, the SOH obtained
as output from the ELM network is also given as input to the
RVFL network.A deep RVFL network using python was used
in this paper for RUL prognosis [26].

IV. CASE STUDY

A. Dataset description

This section will discuss the dataset used for the battery
aging test. The dataset is drawn from experiments performed
by Severson et al. [27], which uses Lithium Iron Phosphate
(LFP) cells fabricated by A123 Systems (APR18650M1A).
The nominal capacity and the nominal voltage are 1.1 Ah and
3.3 V, respectively.

Fig. 6. Current versus time and voltage versus time graph for one charge-
discharge cycle for the dataset used.

The cells have been charged under a two-step fast charging
condition. The battery is initially charged in Constant Current
(CC) mode at 5 Coulomb until the cell reaches 67% SoC.
After that, it is charged in CC mode at 4 Coulomb until the
cell reaches 80% SoC. Charging time is fixed at 10 minutes
for 0% to 80% SoC. Then, the battery is charged at 1 Coulomb
Constant Current-Constant Voltage (CC-CV) mode. As per
the manufacturer’s specifications, the lower and upper cut-
off potentials are 2 V and 3.6 V, respectively. The battery is
discharged at 4 Coulomb CC mode. The current and voltage
graphs for one charge-discharge cycle are shown in Fig. 6.

Three batteries with different charging policies and life
cycles are chosen from Batch - 2018-04-12. The specifications
of the selected batteries along with their charging policies are
shown in Table III. The training, testing and validation data are
taken as 70%, 15% and 15% of the entire dataset, respectively.
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TABLE III
DESCRIPTION OF THE BATTERIES SELECTED FROM THE DATASET

Battery ID Charging policy Channel
ID

Life
cycle

el150800737329 5C(67%)-4C-newstructure 10 1008
el150800737270 5.3C(54%)-4C-newstructure 18 1039
el150800737325 5.6C(36%)-4.3C-newstructure 28 1155

V. RESULT AND DISCUSSION

A. Evaluation of the HIs
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Fig. 7. Correlation Matrix showing the dependencies of the extracted HIs
with the SOH and RUL.

The TIECVD features extracted from the voltage and time
values of the battery charging cycle are used to predict
the battery’s SOH and RUL. Before applying these features
in the ELM and RVFL models, it is vital to analyze the
dependency of SOH and RUL on the extracted HIs. There
are different correlation analysis methods, out of which only
Pearson’s correlation [28] coefficient accepts non-ordinal data.
But Pearson’s coefficient calculation assumes that its data is
linear, which is not the case in this paper. Hence, the data is
divided, and a piece-wise analysis is performed.

Let us assume xi is the ith feature of the feature set with
size n, and yi is the ith target of the target set with size n.
Hence, the Pearson’s correlation coefficient is calculated using
the following formula [28]:

r =
Σn

i=1(xi − x̄)(yi − ȳ)√
Σn

i=1(xi − x̄)2Σn
i=1(yi − ȳ)2

, (8)

where x̄ is
x̄ =

1

n
Σn

i=1xi (9)

and ȳ is

ȳ =
1

n
Σn

i=1yi (10)

Fig. 7 depicts the correlation of the extracted HIs with actual
SOH and RUL. It is understood that the extracted TIECVD
features have a high correlation with SOH and RUL, and hence
they can be used for accurate prediction of battery health.

B. SOH Prediction Results

The proposed ELM-based battery health prediction frame-
work is used to predict the SOH of three different batteries.
This paper evaluates the prediction results based on Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) values
using the Eq. 11-12:

RMSE =

√∑n
i=1(RULactuali − RULpredictedi

)2

n
, (11)

MAE =
|RULactual − RULpredicted|

n
. (12)

Lower values of RMSE and MAE indicate higher accuracy
of prediction. The SOH prediction results of three different
batteries are summarized in Table IV. The low runtime in each
case indicates the feasibility of real-time SOH prediction using
the proposed model.

TABLE IV
SOH PREDICTION RESULTS FOR THREE DIFFERENT BATTERIES

Battery ID Test
RMSE
(%)

Valid.
RMSE
(%)

Test
MAE
(%)

Valid.
MAE
(%)

Runtime
(s)

el150800737329 0.0024 0.0063 0.0012 0.0017 0.078
el150800737270 0.0081 0.0062 0.0024 0.0044 0.0935
el150800737275 0.0053 0.0037 0.003 0.0012 0.0937

The proposed method is executed at different starting
prediction points to verify its effectiveness. Fig. 8(a)-(c)
demonstrates the SOH prediction results for the three chosen
batteries, respectively, when the prediction starting points are
set to 60%, 70%, and 80% of the battery lifetime. The RMSE
and MAE values for all these predictions are represented in bar
graph form, as shown in Fig. 8(d). These results show that the
proposed method can effectively predict the SOH during the
entire battery life, and the accuracy increases if the prediction
starts at a later point.

C. Battery RUL Prediction

Similar to the SOH prediction model, the performance of
the RUL prediction model using the RVFL network has been
evaluated using MSE, RMSE, and MAE. Table V shows
the RUL prediction results for the three chosen batteries.
The low error values prove that the proposed model can
accurately predict the battery RUL so that the battery can
be changed timely without any loss of monitoring data. Fig.
9 (a)-(c) demonstrates the closeness of the actual RUL with
the predicted RUL for all three batteries. The training and
validation loss curves of three batteries for different epochs
are given in Fig. 9 (d)-(f).

TABLE V
RUL PREDICTION RESULTS FOR THREE DIFFERENT BATTERIES

Battery ID MSE(%) RMSE(%) MAE(%) 95% CI
el150800737329 0.0006 0.0247 0.0163 [486, 522]
el150800737270 0.0014 0.0384 0.0304 [502, 539]
el150800737275 0.004 0.0216 0.0163 [558, 597]

For better understanding of the error committed by the
proposed method, the Absolute Error (AE) gives a quick and
more effective information about the proposed model. The
RVFL network is trained using 80% of the samples and the
AE for the three batteries are given in Table VI.
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(a) (b)

(c) (d)

Battery ID
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80% 

training
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80% 
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el150800737329 el150800737270 el150800737275

Fig. 8. Predicted SOH graph with different starting prediction points for batteries (a) el150800737329, (b) el150800737270 and (c) el150800737275; (d)
Error values for the SOH predictions.

(a)

(f)(e)(d)

(c)(b)

Fig. 9. Closeness of the actual RUL with the predicted RUL for batteries (a) el150800737329, (b) el150800737270 and (c) el150800737275; Training and
Validation loss curves for batteries (d) el150800737329, (e) el150800737270 and (f) el150800737275.

TABLE VI
ABSOLUTE ERROR FOR RUL PREDICTION OF THREE DIFFERENT

BATTERIES

Battery ID Actual RUL Predicted RUL AE
el150800737329 806 cycles 815 cycles 9 cycles
el150800737270 831 cycles 824 cycles 7 cycles
el150800737275 923 cycles 912 cycles 11 cycle

D. Identification of Knee Point
The capacity fade of a Li-ion battery over time leads to

reduced SOH value. The point after which the value of SOH

degrades rapidly is termed as the knee-point of the SOH
curve. Identifying knee-point is essential as the battery swiftly
approaches its EOL and becomes unfit to be used reliably.
In this work, the early and late life SOH curve gradients
are evaluated using Linear regression. The point where the
gradient intersection point perpendicularly meets the SOH
curve is considered to be the knee-point, as shown in Fig.
10. For battery el150800737329, the knee-point occurs when
battery SOH is 0.92.
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Knee-point

Fig. 10. Calculation of the knee point in battery SOH graph.
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Fig. 11. (a) iThing hardware setup, (b) Power consumption during battery
health data acquisition, edge computing and transmission.

E. Experimental setup and deployment

The experimental hardware setup of the iThing is shown
in Fig. 11(a). A sensor node is designed for monitoring the
health of a motor based on the vibration data. The rechargeable
Li-ion batteries with 3.7 V nominal voltage and 2.2 Ah
nominal capacity are used in this hardware system. The other
components used in the hardware setup are listed in Table
VII. The iThing was successfully implemented in the designed
sensor node, and edge computation was performed on the
Raspberry pi within a second. The practical implementation
result is shown in Fig. 11(b). The battery SOH and RUL
are predicted as 0.973 and 997 cycles, respectively. Thus, the
proposed technique can be deployed on-board for real-time
SOH and RUL prediction of a rechargeable battery.

TABLE VII
COMPONENT SPECIFICATIONS USED IN THE HARDWARE SETUP

Component name Part number
Micro-controller Raspberry Pi 3B

Battery Management System 1S 18650
DC-DC converter LM2596

Voltage sensor BE-000975
Accelerometer MPU6050

Battery INR18650
Energy harvester Solar panel (12V, 1.8W)

F. Computational efficiency

Since extracting TIECVD features reduces the training data
by a lot, only 0.4% of the data was used in training the
model. Hence, the HIs extracted and stored for training the
SOH and RUL prediction models come down to only 39 KB
of data, which can be discarded after the model’s training
if necessary, saving even more space. Using an off-the-shelf

computing device with a RAM capacity of 1GB, the model
can be deployed for real-time RUL prediction of battery. To
determine the power consumed by the computing device for
data acquisition, edge computing and data transmission, its
current and voltage values were measured using the National
Instruments’ myDAQ module. This provides the power con-
sumption profile for the different working modes, as shown in
Fig. 11(b). It is to be noted that this power profile is only based
on the health prediction of on-board batteries. Moreover, the
edge computing occurs only at scheduled intervals and thus
the power consumption is limited.

G. Comparison with the State-of-the-Art Models

For further performance evaluation of the proposed method,
the testing RMSE and MAE values of the ELM and RVFL
algorithms have been compared with various State-of-the-
Art (SOTA) models that are lightweight and edge-deployable.
The SOTA models considered in this paper are Random For-
est/RF (Ensemble algorithm), Support Vector Regression/SVR
(Machine Learning), and Echo State Network/ESN (Random
Learning). Table VIII shows the comparison of SOH predic-
tion performance using different SOTA algorithms. The ELM
model gave the least RMSE compared to the other models.
Similarly, Table IX compares the performance of several RUL
prediction models, among which the RVFL network gave the
lowest RMSE.

TABLE VIII
SOH PREDICTION PERFORMANCE USING DIFFERENT ALGORITHMS

Algorithm
used

Test RMSE
(%)

Test MAE
(%)

Valid
RMSE (%)

Valid
MAE (%)

ELM 0.0024 0.0012 0.0063 0.0017
RVFL 0.0558 0.0528 0.0569 0.0530
ESN 0.0058 0.0038 0.0081 0.0043
RF 0.0034 0.0024 0.0036 0.0024
SVR 0.0658 0.062 0.0667 0.063

TABLE IX
RUL PREDICTION PERFORMANCE USING DIFFERENT ALGORITHMS

Algorithm
used

Testing
RMSE (%)

Testing
MAE (%)

Valid
RMSE (%)

Valid
MAE (%)

RVFL 0.0247 0.0163 0.0233 0.0158
ELM 0.0545 0.0388 0.0536 0.0374
ESN 0.4409 0.3403 0.4365 0.3396
RF 0.0296 0.0105 0.0291 0.01
SVR 0.0892 0.0647 0.089 0.0643

VI. CONCLUSION AND FUTURE SCOPE

There can be significant loss of vital monitoring information
due to the failure of the IoT sensor node caused by the
death of the battery. It is a challenging task to predict the
battery SOH and RUL accurately and efficiently using less
computational and storage capability, suitable for the low-
powered and remotely operated IoT devices. Considering these
problems, a unique iThing architecture with Battery health
self-monitoring capability has been proposed for uninterrupted
power supply to the IoT sensor nodes in smart industries.
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The main conclusions of the current paper are listed as
follows: (1) An automated HI extraction technique based on
the charging cycle voltage has been proposed that has a high
correlation with SOH and RUL parameters. (2) ELM-based
model has been used for SOH prediction of the battery that
gives only 0.0024% RMSE and 0.0012% MAE. (3) The RUL
prediction of the battery is performed accurately by the RVFL
network with 0.0247% RMSE and 0.0163% MAE. (d) The
data from three different battery cells have been tested to
prove the suitability of the proposed method for SOH and
RUL prediction. Thus, we confirm that the model is accurate
and efficient enough to be implemented in IoT devices and
can benefit the user by alerting them to timely and planned
replacement of the battery cell to avoid any crucial failures.
Although this paper provides a novel method for battery health
estimation, there are still some areas for improvement for this
model. For example, the temperature of the battery, which is a
critical parameter, was not considered. This can be taken into
account for further work on the iThing technique. Only one
type of battery (LiFePO4) was experimented with and used
to train and test the proposed method, which can be considered
for future work. Further, the effectiveness and reliability of the
proposed iThing for SOH and RUL prediction can be checked
practically after months of running the battery. Moreover, the
health prediction of a battery in its second life can also be a
viable option for our future work.
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