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Abstract The pandemic of novel Coronavirus Disease

2019 (COVID-19) is widespread all over the world caus-

ing serious health problems as well as serious impacts

on the global economy. Reliable and fast testing of the

COVID-19 has been a challenge for researchers and

healthcare practitioners. In this work we present a novel

machine learning (ML) integrated X-ray device in Health-

care Cyber-Physical System (H-CPS) or smart health-

care framework (called “CoviLearn”) to allow health-

care practitioners to perform an automatic initial screen-

ing of COVID-19 patients. We propose convolutional

neural network (CNN) models of X-ray images inte-

grated into an X-ray device for automatic COVID-19

detection. The proposed CoviLearn device will be use-

ful in detecting if a person is COVID-19 positive or neg-

ative by considering the chest X-ray image of individu-

als. CoviLearn will be a useful tool for doctors to detect

potential COVID-19 infections instantaneously without

taking more intrusive healthcare data samples, such as

saliva and blood. COVID-19 attacks the endothelium

tissues that support the respiratory tract, X-rays im-

ages can be used to analyze the health of a patient’s

lungs. As all healthcare centers have X-ray machines,

it could be possible to use proposed CoviLearn X-rays

to test for COVID-19 without the special test kits. Our

proposed automated analysis system CoviLearn which
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has 98.98% accuracy will be able to save valuable time

of medical professionals as the X-ray machines come

with a drawback as they require radiology experts.
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1 Introduction

Coronavirus disease (COVID-19) is a respiratory tract

infectious disease that has spread across the world [1]. It

belongs to a family of viruses whose infection can cause

complications that vary from typical cold to shortness

of breath [2]. Patients also develop pneumonia termed,

Novel Coronavirus Pneumonia (NCP), that results in

acute respiratory failure with a very poor prognosis

and high mortality [3], [4]. Subsequently, the pandemic

nature of the coronavirus and the absence of reliable

vaccines make COVID-19 diagnosis an urgent medical

crisis.

At present, the standard testing method for COVID-

19 diagnosis is the real-time Reverse Transcription Poly-

merase Chain Reaction (rRT-PCR) test. In this test,

nasal swab is collected from the patient and kept in a

special medium called the “virus transport medium”,

to protect the RNA. Upon reaching the lab, the swab

is further processed to determine whether or not the

patient is positive for the coronavirus [5]. The entire

process takes several hours and the results generally

arrive after a day or two depending on the time taken

from the swab to reach the lab.

The spread of the COVID-19 virus at this point,

advocates the requirement of its quick diagnosis and

treatment. Studies such as [6], [7] have proved that the

COVID-19 virus infects the lungs and creates smooth
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and thick mucus in the patient’s affected lungs that

is visible when chest X-rays and CT scans are per-

formed. However, the analysis of X-ray images is a te-

dious task and require expert radiologists. In this en-

deavor, several computer algorithms and diagnosis tools

such as [8], [9] have been proposed to get detailed in-

sights from the X-ray images. Although these studies

have performed efficiently, they lack in terms of higher

accuracy, generalization, computational time, and er-

ror rate. To mitigate the shortcomings, recent studies

such as [10], [11], [12], [13] have incorporated machine

learning (ML) and deep learning (DL) tools to inves-

tigate the chest X-ray images. The selection of proper

DL-based automated analyzer and predictor for coron-

avirus patients will be very beneficial and helpful for the

medical department and society. Additionally, ML-DL

approaches can provide test results faster and more eco-

nomically as compared to the laboratory-based tests.

Further, as COVID-19 is spreading rapidly through

person-to-person contact, hospitals and healthcare pro-

fessionals are becoming increasing overburdened, some-

times to the point of complete breakdown. Clearly an

alternative, remote-based, online diagnostic and testing

solution is required to fill this urgent and unmet need.

The Internet of Medical Things (IoMT) could be ex-

tended to achieve this healthcare-specific solution. With

this motivation, the present work proposes an AI-based

Healthcare Cyber-Physical System (H-CPS) that incor-

porates convolutional neural networks (CNNs) (see Fig-

ure 1). The model allows healthcare practitioners to

promptly and automatically screen positive and nega-

tive COVID-19 patients by considering their chest X-

ray images.
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Fig. 1 Process flow of proposed COVID-19 classification.

The organization of the paper is as follows: Section

2 discusses the working of existing COVID-19 detec-

tion models, their shortcomings and our contributions

in the H-CPS framework. Section 3 explains the pro-

posed solution and its functioning, followed by Section

4 that validates the model using real-life data. Section 3

Finally, Section 5 gives a compact conclusion and men-

tions the area of future study.

2 Related Prior Research Works

2.1 How Existing Research Models Function

Over the course of two years, many techniques have

been proposed for effective COVID-19 detection [14].

However, from the exhaustive list of works, we have

selected some of the state-of-the-art methods focusing

only on the deep learning based COVID-19 detection.

A CNN called COVIDNet was trained in [15] using

more than 15000 chest radiography images of COVID-

19 positive and negative cases. The DNN reported ac-

curacy of 92.4% and sensitivity of 80%. A three dimen-

sional convolutional ResNet-50 network, termed COV-

Net, was proposed in [16] that utilized volumetric chest

CT images consisting of community acquired pneumo-

nia (CAP) and other non-pneumonia cases. The re-

ported AUC metric by the model was 0.96. A similar

ResNet-50 model proposed by [17] reported an AUC of

0.996 although tested to a much lesser dataset. In [18],

a Location-attention network using ResNet-18 was pro-

posed using disparate CT samples from COVID-19 pa-

tients, influenza-A infected, and healthy individuals to

classify COVID-19 cases, that reported an accuracy

of 86.7%. Samples from 4 classes: healthy, bacterial

pneumonia, non-COVID-19 pneumonia, and COVID-

19 were used in [19] to train drop-weights based Bayesian

CNNs that reported an accuracy of 89.92%.

In [20] a modified inception transfer-learning model

that reported an accuracy of 79.3%, specificity of 0.83

and sensitivity of 0.67 was proposed. In [21] a Multilayer

perceptron combined with an LSTM neural network

was implemented, that was trained using clinical data

collected from 133 patients out of which 54 belonged

to the critical care domain. The authors in [22] imple-

mented a two dimensional deep CNN architecture while

the authors in [23] combined three dimensional UNet

and ResNet-50 architectures. Both were trained using

volumetric CT scanned data of patients categorized as

COVID-19 positive and negative. The method in [24]

used a pre-trained ResNet-50 network using chest X-

ray images from 50 COVID-19 positive and 50 COVID-

19 negative patients and reported an accuracy of 98%.

In [25] four state-of-the-art DNNs: AlexNet, Resnet-18,

DenseNet-201, and SqueezeNet were ensembled. The

model also used chest X-ray images of normal, viral

pneumonia, and COVID-19 cases. A novel CNN aug-

mented with a pre-trained AlexNet using transfer learn-

ing was proposed in [26]. The model was tested on both
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X-ray and CT scanned images with reported accuracies

of 98% and 94.1% respectively.

2.2 Shortcomings in the Existing Research Works

Although the domain is very new and many studies per-

taining to the deep learning based methodology have

been proposed, most of them suffer from shortcom-

ings such as lower accuracy, model generalization, com-

putational cost and error rate. Even when certain re-

search works achieve higher accuracy, they either suffer

from lower sensitivity, specificity or have a small test

dataset. Moreover, the prospect of augmenting IoMT

frameworks with COVID-19 diagnosis is new and its

incorporation can further assist the existing healthcare

system to cope in this difficult times. Also, the training

dataset for certain methods is limited because of class

imbalance, that is, less number of coronavirus images

as compared to normal lung images. This problem of

dataset imbalance results in lesser model accuracy and

less efficient. Table 1 provides a comprehensive compar-

ison of the existing research works.

2.3 Our Vision of CoviLearn in the H-CPS Framework

We propose an AI-based H-CPS framework termed “Cov-

iLearn” to provide healthcare professionals the lever-

age to perform automatic screening of COVID-19 pa-

tients using their chest X-ray images. With a deep neu-

ral network (DNN) in its core, the CoviLearn model is

implemented on the server for ubiquitous deployment.

The hyperparamters of the DNN have been adjusted

to make its functioning reliable, accurate and specific.

By just uploading the X-ray images, the model auto-

matically identifies the symptoms and reports unbiased

results. CoviLearn augmented with H-CPS brings pa-

tients, doctors and test lab in a single smart healthcare

platform as illustrated in Figure 2. The reported re-

sults can be uploaded to the IoMT platform from where

it maybe transferred to nearby COVID-care hospitals,

the Center for Disease Control (CDC), and state and

local health bureaus. Hospitals could subsequently of-

fer online health consultations based on the patient’s

condition and monitor vital equipments and quaran-

tine requirements. Therefore, the proposed H-CPS pro-

vides people the leverage to dynamically monitor their

disease status, receive proper medical needs, and even-

tually curb the spread of the virus.

2.4 Novel Contributions of CoviLearn

The major contributions of the work are:

– An architecture of H-CPS framework augmented

with a next generation smart X-ray machine archi-

tecture at the interface, is proposed to combat the

spread of COVID-19.

– An efficient heuristic search technique is incorpo-

rated which automatically finds an optimal feature

subset present in the input chest X-ray images.

– An end-to-end automatic functioning DNN model

that extracts the features from X-ray images is in-

corporated.

– The CNN blocks are reliable, accurate, and very

specific that makes the overall model very effective.

Further, the model can be easily integrated into em-

bedded and mobile devices, thereby assisting health

practitioners to effectively diagnose COVID-19.

3 Proposed CoviLearn Model for Automatic

Initial Screening of COVID-19

3.1 The CoviLearn Device for Next Generation X-ray

Screening

As discussed in the earlier Sections, COVID-19 and

other related pneumonia diseases can be screened and

diagnosed by analysing chest X-ray images. However,

the existing X-ray diagnosis suffers from limited ac-

cess and lack of experienced personnel. To address this

issue, we propose a next-generation X-ray system in

the H-CPS perspective. The H-CPS and IoMT together

brings all the necessary agents of smart healthcare in

a universal communication and connectivity platform.

This linking of technologies extend the efficiency ser-

vices such as telemedicine, teleconsultation and endorse

smart-medical care.

Fig. 3 shows the system-level block diagram of the

next generation X-ray machine integrated with Cov-

iLearn for automatic screening of infectious diseases. It

identifies most of its components, such as X-ray appa-

ratus (tube), flat panel detector, onboard memory, DI-

COM protocol converter, Image processing, CoviLearn

diagnosis, wired/wireless data communication, display

or user interface, along with system controller. In the

proposed X-ray machine, X-ray image is captured by

an array of sensor in the digital and radiography flat

panel detector. The flat panel also includes the devices

of communication to next stages. The image is then

saved and converted to DICOM X-ray image. Subse-

quently, the image is processed and based on the qual-

ity and requirement the exposure of the X-ray tube is

adjusted. The captured image is stored temporarily in

the local memory, after which it is displayed on mon-

itor screen with the help of the controller. After ac-

quiring the quality assured image, it is then transferred
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Table 1 Comparative Perspective with Related AI Works for COVID-19 Detection

Model Dataset Used Method Results Shortcoming(s)
Wang et al. [15] 15000 chest radiography

images of confirmed
COVID-19 positive and
negative cases

Deep convolutional neural net-
work called COVIDNet

Accuracy-92.4%,
Sensitivity-80%

Comparatively
lower accuracy and
sensitivity

Li et al. [16] 4356 Volumetric chest
CT images that included
community acquired
pneumonia (CAP) and
other non-pneumonia
cases

3-Dimensional Convolutional
ResNet-50 network, termed
COVNetDeep

AUC-0.96 High computa-
tional cost and
requirement of
professionals to
analyze the results

Gozes et al. [17] CT images from 157
COVID affected patients

ResNet-50 AUC-0.996 Relatively small
testing dataset

Xu et al. [18] 618 CT samples from
COVID-19 patients
(219), influenza-A in-
fected (224), and healthy
individuals (175)

Location attention network us-
ing ResNet-18

Accuracy-86.7% Lower accuracy

Ghoshal et al.
[19]

5941 Chest radiogra-
phy images samples
from 4 classes: healthy,
bacterial pneumonia,
non-COVID19 pneumo-
nia

Drop-weights based Bayesian
CNNs

Accuracy-89.92% Lower accuracy

Wang et al. [20] 1065 CT images (325
COVID, 740 Viral Pneu-
monia)

Modified inception transfer
learning model

Accuracy-79.3%,
Specificity-83%,
Sensitivity-67%

Lower accuracy and
imbalanced dataset

Fang et al. [21] 133 CT images of
COVID-19 patients

Multilayer perceptron com-
bined with an LSTM

AUC-0.954 Relatively smaller
dataset size and
lower accuracy

Jin Feng et al.
[22]

970 CT images of
COVID-19 positive and
1385 COVID-19 negative
patients

2-Dimensional CNN Accuracy-94.98%,
AUC-0.979

Lower accuracy and
lack of generaliza-
tion

Jin et al. [23] 1136 CT images (723
COVID-19 positive)

3-Dimensional UNet and
ResNet-50

Specificity-92.2%,
Sensitivity-97.4%

Lower accuracy

Narin et al. [24] Chest X-ray images from
50 COVID-19 positive
and 50 COVID-19 nega-
tive patients

ResNet-50 Accuracy-98% Relatively small
testing dataset

Chowdhury et
al. [25]

1341 Normal, 1345 Vi-
ral Pneumonia and 190
COVID-19 chest X-ray
images

Combination of AlexNet,
ResNet-18, DenseNet-201, and
SqueezeNet

Accuracy-98.3% High computa-
tional cost, large
number of training
hyperparameters,
and class imbalance

Maghdid et al.
[26]

170 X-ray and 361 CT
images

CNN augmented with a pre-
trained AlexNet using transfer
learning

Accuracy-98%
for X-ray images,
Accuracy-94.1%
for CT images

High computa-
tional cost and lack
of implementation
in smart healthcare

to the CoviLearn model which automatically classifies

the image either as normal or COVID-19 affected. The

image classification is performed either locally in the

presence of sufficient resources or on cloud by trans-

mitting the images over network. The test results au-

tomatically synchronizes with the H-CPS platform for

necessary medical and administrative actions. The con-

troller unit is responsible for controlling the entire se-

quence of events.

3.2 Dataset Used for Validating the Proposed

CoviLearn System

To overcome the problem of class imbalance we have

manually collected chest X-ray of patients having coro-

navirus. These images are from various resources such

as pyimagesearch, radiopedia, sirm and eurorad. For

the normal chest X-ray we have used the chest X-ray

dataset from the National Institute of Health (NIH),

USA [27]. The count of images from both the sources
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was 250. Subsequently, the dataset has been divided

into two classes: patient’s diagnosed as COVID-19 posi-

tive and negative. For training 80% of the dataset (∼200

images) is used from which 30% is used for validation

(∼60 images). The testing of the model is performed on

20% (∼50 images) of the dataset. Based on this valida-

tion dataset, the loss and validation graphs have been

plotted. All the images are processed and mixed to pre-

vent undue biasing as discussed in the following subsec-

tions.

3.2.1 Data Pre-Processing

All the captured images have different sizes, and there-

fore data pre-processing was essential before doing fur-

ther analysis. The pre-processing is performed in three
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stages: firstly, the individual data are normalized by

subtracting the mean RGB values. Secondly, all the pix-

els in the input image data are scaled within the range

of 0 to 1. Finally, the tensor is reshaped appropriately

so that it fits the model (in this case the tensor is re-

shaped into 224 × 224 pixels).

3.2.2 Data Augmentation

Deep learning models are ravenous for data and since

our model only has around 250 images for each class

hence the volume of our data needs to be increased

and this can be achieved through data augmentation.

Therefore, similar to the process mentioned in [28], the

input images are augmented by random crop, adjust

contrast, flip, rotation, adjust brightness, horizontal-

vertical shift, aspect ratio, random shear, zoom and

pixel jitter. As a result of this augmentation, the pro-

posed CoviLearn system became more efficient.

3.3 The Proposed Transfer Learning for Deep Neural

Network in CoviLearn

CoviLearn uses transfer learning to predict the clas-

sification results. Transfer learning substitutes for the

requirement of large dataset and has been used in dif-

ferent applications, such as healthcare, manufacturing,

etc. It uses the knowledge learned in training a large

dataset and transfers that same knowledge in some dif-

ferent and smaller dataset. In the present work, four

different DNNs: ResNet-50, ResNet-101, DenseNet-121

and DenseNet-169, along with different blocks to train

the individual networks. The hyperparamters have been

adjusted in order to report the highest accuracy. De-

tailed structural organizational of network layers is as

illustrated in Figure 4 where each network is divided

into phases, starting from getting an image input, fol-

lowed by training the model by sequentially passing the

set of images into convolutional networks, to finally pre-

dicting the results using a classification layer. Following

subsection discusses the base classifiers and the differ-

ence between them.

3.3.1 Deep neural base classifiers

The CoviLearn model uses four deep neural networks as

the base classifiers. Two of these belong to the ResNet

family [29] (ResNet-50 and ResNet-101) and remaining

two belongs to the DenseNet family [30] (DenseNet-121

and DenseNet-169). As the convolutional neural net-

works become deeper, the back propagated error from

any layer is required to traverse the entire depth where

repeated weight multiplications occur. As a result of
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Fig. 4 Organization of the DNN with classification layers.

these multiplications, the original error significantly di-

minishes and the neural network’s performance is sat-

isfactorily affected. To combat this, researchers have

proposed many architectures, out of which the current

state-of-the-art includes the DenseNet and the ResNet

models.

DenseNet or Dense Convolutional Network solves

the problem by using shorter connections between the

layers. In other words, inside the DenseNet network, the

each layer is connected to all its higher layers. Equation

(1) represents the learning equation for a traditional

CNN,

Pl = Tl(Pl−1), (1)

where, Pl represents the lth layer of the network, and Tl

denotes the feature learned in the previous layer. For a

DenseNet, the Equation changes to (2),

Pl = Tl[P0, P1, P2, ...., Pl−1]. (2)

This arrangement allows feature reusing without having

to travel the entire depth or entire depth of the net-

work. In comparison to a traditional CNN, DenseNet

requires fewer parameters because features learned in

one layer is sent to the higher layers thereby elimi-

nating redundancy. A typical DenseNet architecture in-

volves a convolution layer, followed by a pooling layer.

These are followed by 4 dense blocks and 3 transi-

tion blocks placed one after the other. Inside the dense

block, there are two convolutional layers with filters of

different sizes, while the transition layer involves an

average pooling layer. The dissimilarity between the

DenseNet-121 and DenseNet-169 networks is with re-

spect to the number of hidden layers. For the former

the total number of convolution layers in the four Dense

Blocks is 121 while for the latter that is 169. Increasing
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the layers does not necessarily improves the accuracy

and depends upon the particular situation.

Residual Networks or ResNet solve the problem of

vanishing gradient decent by utilizing a skip connection

between the original input and the final convolution lay-

ers. By overlooking the in between layers and attaching

the given input directly to the output allows the pres-

ence of an additional path for the back propagated error

to flow and therefore solving the problem of vanishing

gradient descent. For a DenseNet, the Equation changes

to (3),

Pl = Tl(Pl−1) + Pl−1. (3)

A typical ResNet architecture involves four stages. The

first stage is responsible for performing zero padding

operation on the input data. The second stage is made

up of convolutional blocks that performs convolution

along with batch-normalization and max-pooling. The

penultimate layer consists of identity blocks augmented

with filters, followed by the final stage that comprises a

GAP layer, a fully connected dense layer, and classifier

function. All convolution layers use ReLU as the acti-

vation function. Similar to DenseNet, the two types of

ResNets that is ResNet-50 and ResNet-101 differ in the

depth of the network. It has been observed that certain

variations of ResNet have redundant layers that barely

contribute. The presence of them results in ResNet han-

dling larger parameters and weights. On the other hand,

DenseNet are relatively narrow (fewer number of filters)

and simply add the new feature maps. Another differ-

ence between the DenseNet and ResNet models is that

the former does not sum the output feature maps of the

preceding layers but rather concatenates them, unlike

the latter where summation happens. This is evident

from Equations (2) and (3).

3.4 Training and Testing of the Proposed Model

The CoviLearn model takes the input image, swaps the

color channels and resizes it to 224×224 pixels. After-

wards, the data and label list are converted into an ar-

ray while the pixel intensities are normalized between

0 to 1, by dividing the entire input image by 255. Sub-

sequently, one-hot encoding is performed on the labels,

following which various models are loaded one at a time

by freezing few upper layers and a base layer is created

with dropout. Finally, the input tensor of size 224 ×
224 is loaded onto the model and compiled using Adam

optimizer and binary cross entropy loss.

4 Performance Evaluation

4.1 Experimental Setup

To compare the performance of different models, three

evaluation parameters: accuracy, sensitivity and speci-

ficity have been considered. As the test images are con-

verted into 224 × 224 tensor, the model predicts the

above mentioned three metrics. Table 2 illustrates the

comparison of results between the four models: DNN I

(ResNet-50), DNN II (ResNet-101), DNN III (DenseNet-

121), and DNN IV (DenseNet-169). A confusion matrix

(see Figure 5 compares the True Positive, True Nega-

tive, False Positive and False Negative values. More-

over, loss-accuracy versus epoch graph is also provided

to project how the training loss, validation loss, train-

ing accuracy and validation accuracy vary with each

epoch.

4.2 Result Analysis

In context of coronavirus detection, True Positive (TP)

is when the patient has coronavirus and the model de-

tects coronavirus, True Negative is when the patient

doesn’t have coronavirus and the model also predicts

the same. False Positive (FP) is when the the patient

is not infected with the coronavirus but the model pre-

dicts the opposite, while False Negative (FN) is when

the patient has coronavirus but the model says other-

wise. Accuracy specifies the correct number of predic-

tions made by the CoviLearn model with respect to the

total number of patients and is represented by Equa-

tion (4). Additional metrics such as sensitivity - the

ability to identify coronavirus patients correctly - and

selectivity - the ability to identify non-coronavirus pa-

tients correctly - are as defined by Equation (5) and (6)

respectively,

Accuracy =
TP + TN

TN + TP + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
. (6)

Table 2 summarizes the performance matrix for differ-

ent deep learning model tested for the different classifi-

cation schemes. DNN III, which has DenseNet-121 ar-

chitecture performs best over other models in classifica-

tion yielding an accuracy of 98.98%, sensitivity of 100%,

and specificity value of 98%. Whereas, DNN I has the

lowest performance value with an accuracy of 95.92%,

sensitivity of 95.83%, and specificity value of 96%. Fig.
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Table 2 Performance metrics for different deep learning techniques.

Models Explored Accuracy Sensitivity Specificity Total Parameter AUC Area
DNN I 0.9592 0.9583 0.9600 23,696,066 0.959
DNN II 0.9694 0.9792 0.9600 42,757,826 0.970
DNN III 0.9898 1.0000 0.9800 7,103,234 0.990
DNN IV 0.9796 1.0000 0.9600 12,749,570 0.980

5 shows the confusion matrices of COVID-19 and nor-

mal test results of the different pre-trained models. The

graphs show a well defined pattern of the training-

validation accuracy that increases, and the training-

validation loss that decreases, with increasing epochs.

Because of the limited computational resources, the

comparison between different parameters is done for 25

epochs only. Besides the confusion matrix, receiver op-

erating characteristic (ROC) curve plots and areas for

each model is given in Fig. 6. DNNs which are trained

with DenseNet pre-trained blocks appear to be very

higher than DNN trained with ResNet blocks, with

DNN III having the highest AUC of 99%. One of the in-

teresting findings is the DNN which when used with the

ability of the DenseNet model achieves higher sensitiv-

ity and specificity. This ensures reduction of false pos-

itives for both the COVID-19 and the healthy classes.

As is evident from the relationship between accuracy

and epoch, DNN-III shows the highest accuracy fol-

lowed by DNN-IV, DNN-II and DNN-I. The accuracy

increases with each subsequent epoch except at few as

illustrated in Figure 7. A similar trend is shown in

loss graphs where the loss decreases with each subse-

quent epochs and a similar trend is followed, that is,

DNN-III shows the lowest loss followed by DNN-IV,

DNN-II and DNN-I (see Figure 8). The results as re-

ported by the proposed CoviLearn model are compared

with the existing research works and tabulated in Ta-

ble 3. [18], detects COVID-19 using classification of CT

samples by CNN models with an accuracy of 86.7%,

sensitivity of 98.2% and specificity of 92.2%. CovidNet

in [15] reported an accuracy of 93.3%. The CNN based

DarkCovidNet model [31] to detect COVID-19 from

chest X-ray also has an accuracy of 98.08%. In compar-

ison, the proposed model has an accuracy of 98.98%,

sensitivity of 0.984 and specificity of 0965. CoviLearn

has significantly outperformed existing deep learning

based COVID-19 detection techniques such as [15], [18],

[19], [20], and [23]. Also, the sensitivity of the pro-

posed model has outperformed existing models such

as [15], [20] and [23] both in terms of sensitivity and

specificity. [17], [21] and [24] achieved similar accuracy,

however, their test dataset size is relatively smaller than

the one used in the current work. The deep neural archi-

tectures proposed in [25] and [26] involved many hyper-

parameters, estimation of which increased the overall

computation cost and resulted in ubiquitous deploy-

ment. On the other hand, CoviLearn because of its

transfer learning ability and selected deep neural net-

works has the advantage of rejecting redundant param-

eters and thereby reducing the overall computational

cost. Finally, all these models lacked a smart healthcare

framework, which has been proposed and implemented

in CoviLearn in the form of H-CPS. The comparison of

existing research works are compactly summarized in

Tables 3 and 4.
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2                  48

47                 1

2                  48

47                 1

2                  48

COVID-19

Normal

48                 0

2                  48

COVID-19

Normal

Normal

COVID-19

Normal

COVID-19

(a) DNN I (b) DNN II

(c) DNN III (d) DNN IV

Fig. 5 Confusion matrix for (a) DNN I, (b) DNN II, (c)
DNN III and (d) DNN IV.

4.2.1 Effectiveness of the Transfer Learning Concept

The initial neural network when trained reported accu-

racy, sensitivity, and specificity values of 0.5981, 0.6041,

and 0.5923 respectively. To improve these substantially,

we used the concept of transfer learning. It is done by

freezing the layers of the existing models and replac-

ing with the penultimate layer (the layer responsible

for performing classification) of state-of-the-art neural

networks trained on larger datasets to perform final
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Table 3 Comparison of results with existing recent similar
works

Methods Technique Accuracy
(in %)

Xu at al. [18] Deep CNN model 3D -
DL model

86.7

Wang et al. [15] CovidNet, VGG-19
and ResNet-50 model

93.3

Ozturk et al.
[31]

DarkNet and YOLO 98.08

Khatri et
al. [32]

EMD approach 83.30

Togacar et al.
[33]

Deep CNN model 96.84

CoviLearn Deep-CNN based
DenseNet

98.98

Table 4 Comparison with existing deep learning-based
COVID-19 detection model

Methods Accuracy (in %) Dataset
Size

Wang et al. [15] 92.4 15000
Xu et al. [18] 86.7 618
Ghoshal et al.
[19]

89.92 5941

Wang et al. [20] 79.3 1065
Jin et al. [22] 94.98 2355
Narin et al. [24] 98 100
Chowdhury et
al. [25]

98.3 2876

Maghdid et al.
[26]

98 (X-ray), 94.1 (CT) 531

CoviLearn 98.98 250

classification. This step improved the accuracy, sen-

sitivity, and specificity metrics to 0.9225, 0.9319 and

0.9135 respectively. Following this step, fine-tuning is

performed on the model’s hyperparameters to further

improve the model’s performance by ∼5%. Therefore,

despite a small training dataset of 250 images, embed-

ding the transfer learning helped improve the model’s

classification performance significantly. Table 5 com-

pares the metrics obtained in each of the stages.

Table 5 Performance metrics at different stages of training

Stage Network Accuracy Sensitivity Specificity

Initial Training

DNN I 0.5887 0.5882 0.5892
DNN II 0.5949 0.6009 0.5892
DNN III 0.6075 0.6137 0.6015
DNN IV 0.6012 0.6137 0.5892

Transfer Learning

DNN I 0.9081 0.9072 0.9088
DNN II 0.9177 0.9270 0.9088
DNN III 0.9370 0.9467 0.9278
DNN IV 0.9274 0.9467 0.9088

Fine Tuning

DNN I 0.9592 0.9583 0.9600
DNN II 0.9694 0.9792 0.9600
DNN III 0.9898 1.0000 0.9800
DNN IV 0.9796 1.0000 0.9600
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5 Conclusions and Future Scope

The study presents CoviLearn, a DNN-based transfer

learning approach in Healthcare Cyber-Physical Sys-

tem framework to perform automatic initial screening

of COVID-19 patients using their chest X-ray image

data. An architecture of next generation smart X-ray

machine for automatic screening of COVID-19 is pro-

posed at the interface of H-CPS. Four different DNNs:

ResNet-50, ResNet-101, DenseNet-121 and DenseNet-

169 are trained and tested for classification of the X-ray

images from healthy and corona diseases infected pa-

tients. DenseNet-121 showed the highest accuracy close

to 98.98% followed by DenseNet-169 , ResNet-50 and

ResNet-101. Similarly, the sensitivity of DenseNet-121

and DenseNet-169 are 100%, while that of ResNet-50

and ResNet-101 are close to 97%. The highest speci-

ficity of DNN III is 98%. Therefore, all these results

clearly indicate the ability to classify the deadly coro-

navirus correctly.

The present CoviLearn platform will be very use-

ful tool doctors to diagnosis the coronavirus disease at

a lower cost despite being economical and automatic.

However, additional study and medical trial is required

to full proof the extracted features extracted by ma-

chine learning as reliable bio-markers for COVID-19.

Further, these machine learning models can be extended

to diagnose other chest-related diseases including tu-

berculosis and pneumonia. A limitation of the study is

the use of a limited number of COVID-19 X-ray im-

ages. Therefore, in the future a larger dataset and a

cloud based system can be ventured to make the model

ubiquitous and more robust. In fact, the results can

be used to detect the highly prone corona positive pa-

tients in a timely application of quarantine measure,

until the rRT-PCR test examinations results are ob-

tained. The proposed CoviLearn can be added to our

healthcare CPS framework CoviChain for reliable in-

formation sharing right from the source to destination

end while accommodating various stake holders [34].
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