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Abstract—In recent years, advanced computing techniques
have been investigated and employed for the computerized
detection of brain disorders like schizophrenia. Schizophrenia is a
neurological condition leading to hallucinations and disorganized
speech in patients. Emerging deep-learning approaches can
augment the computer-based diagnosis of this brain disorder
by measuring and analyzing the Electroencephalography (EEG)
signals. This paper proposes a novel concept of easy-to-wear
cap, namely SczCap, integrating hardware and software for
acquiring EEG signals from the scalp for accurate schizophrenia
detection. In this research, A seven-layer model comprising of
convolution neural network (CNN) and temporal convolution
network (TCN) is designed and tested using raw EEG data
(approach 1) and manually extracted features (approach 2).
Three pre-trained models, VGG 16, AlexNet, and ResNet 50,
along with the proposed model, have also been implemented in
this work. A dataset consisting of EEG signals of 14 healthy
and 14 schizophrenic patients is used in this work for the
implementations. The performance of the proposed CNN-TCN
model (approach 1 & 2) is also presented using non-subject-
wise and subject-wise experiments. It is found that the proposed
CNN-TCN model using approach 1 outperformed all other
implemented models with 99.57% accuracy, 99.51% sensitivity,
99.64% specificity, and 99.63% precision in non-subject-wise
experiments. The experimental results also exhibit the superiority
of this model over other schizophrenia models in the state of art
literature.

Index Terms—A Wearable device, CNN, EEG Measurement,
TCN, Schizophrenia Disorder, Smart Healthcare.

I. INTRODUCTION

SCHIZOPHRENIA is a pathological condition of the
brain accompanied by cognitive disorders like persistent

delusions and hallucinations. With 1 in 300 persons affected
worldwide, this illness leads to discrimination, the social
boycott of the patients, and educational, financial, and personal
damages in their life. Diagnosing psychiatric disorders was
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conventionally conducted using face-to-face interactions with
patients, their behavioral indications, and typical observable
symptoms [1]. To analyze the biological markers causing the
abnormal brain functioning in a person who has schizophrenia,
researchers worldwide are working on different techniques [2].

EEG offers cost-effective technology for non-invasive
acquire neural data of continual brain activities [3]. The
test involves carefully placed electrodes on the scalp of the
patient under diagnosis to record and measure the ongoing
electrical activity of numerous neurons inside the human
brain. These brain activities are represented in the form
of graphs and chart for further analysis. The information
acquired by EEG signals provides a reliable tool for the
diagnosis of various neurological abnormalities occurring in
brain activities due to conditions like epilepsy [4], Autism [5],
schizophrenia [6], [7], Depression [8] etc. The advancements
in non-linear computation theories helped augment the
analysis and understanding of complex, non-linear EEG
signal data. The EEG from healthy and schizophrenia
subjects is shown in Figure 1. The irregularities and choppy
activities are more prominent in the EEG of schizophrenia
subjects. The indications deciphered from temporal EEG
signals can provide rich data for traditional techniques
deployed for feature extraction [9]. At present, EEG is a
preferred tool due to its capacity to record data during a
specific time interval. Detailed analysis of EEG recordings
is time-consuming and may result in inaccurate results even
when interpreted by proficient neurophysiologists. Accurate
diagnosis demands efficient visual inspection of recorded
patterns. Recent advances in high-performing data processing
techniques like machine learning can address the concerns of
decoding the massive amount of data acquired by healthcare
systems [10]–[12]. To further enhance the usability of such
diagnoses, the timely detection of neurological diseases can
be a milestone in augmenting the medical industry with
intelligent systems. A wearable device for real-time EEG data
capture and processing is crucial for a health practitioner’s
fast detection and early treatment.

The proposed device, SczCap, aims to detect schizophrenia
disease from EEG signals gathered from a person’s head.
Signals acquired by the electrodes are processed by the edge
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(a) Normal Subjects (b) Schizophrenia Subjects

Fig. 1: EEG from normal and schizophrenia subjects.

processing unit (EPU), and generated results are sent for server
storage on the cloud. This is a novel model for integrating
hardware and software in a single device to imploring the
advantages of cloud computing in the medical field. The CNN-
TCN model can use the acquired EEG signals for training
and classification if the person has schizophrenia. Figure 2
gives a conceptual diagram for SczCap. The chart shows
that the edge processing unit implements the deep learning
model for automatic schizophrenia detection. This comprises
the device’s main module, which indicates schizophrenia
detection with green and schizophrenia absence with a red
indicator. Electrodes placed over the entire unit collect data,
and processed data can be sent for cloud storage.
The rest of this paper is organized in the following manner:

Schizophrenia Indicators  
Green - Schizophrenia Positive 
Red - Schizophrenia Negative

Module of SczCap

Edge processing unit
with proposed deep

learning model

EEG
electrodes

Cloud

EEG data to cloud

Fig. 2: Conceptual diagram of SczCap.

Section II presents the background and contribution. The
methodology, along with the datasets, is explained in Section
III. The implementation is elaborated on in section IV. Section
V covers the results, and discussions are carried out in Section
VI. Finally, the conclusion is presented in section VII.

II. STATE OF THE ART

A. Literature based on consumer electronics in schizophrenia
detection

Smart healthcare systems have received widespread
attention with the advancement of the Internet of Medical
Things (IoMT). IoMT aims to interconnect medical devices
and instruments for real-time patient data collection
[13]. Improvement in communication technologies increased
sensing devices, and efforts to provide swift medical services

helped conceive the idea of smart healthcare systems.
In a study, the psychomotor activity of 55 patients was
measured for 24 hours, and it was discovered that, in
those with Schizophrenia, differences in physical activity
accurately distinguished between the first psychotic episode
and subsequent outbreaks, with lower activity indicating more
significant deterioration [14]. A wearable mHealth was used
on 30 schizophrenia and 25 normal subjects to record their
regular daily activity and movements [15].
The gadget collected data on mobility, electrodermal activity
(EDA), and heart rate variability (HRV). In individuals
with Schizophrenia, the relationship between physiological
measurements, functioning, symptoms, and medication levels
was evaluated. A study demonstrated how commercially
accessible wrist-wearables and smartphones could be used to
passively collect digital data and find out how useful they are
in predicting health outcomes in schizophrenia patients. They
used Fitbit Charge 3 or 4 wristbands and a smartphone and in-
house built app: HOPES (Health Outcomes through Positive
Engagement and Self Empowerment) to collect data for further
analysis using machine learning algorithms [16]. A method
to gather behavioral representation from mobile sensing data
using clustering models, which could be helpful for relapse
prediction, was presented in. [17]. A bidirectional LSTM
layer-based model for detecting people with Schizophrenia by
visualization of distinguishing traits was developed in [18].
The model collected EEG data from a wearable wristband
and separated the healthy and unhealthy people with 86.60%
accuracy.

B. Literature based on EEG-based schizophrenia detection

Much research has been suggested for listing the methods
employed for acquiring the EEG data and further filtering
the stored data for noise removal [19]–[21]. As observed
in literature survey, various techniques have been proposed
and implemented for schizophrenia diagnosis procedure. Table
I summarizes different approaches and models for accurate
schizophrenia detection and prediction.

A visually evoked potential method to categorize a
schizophrenic patient was investigated in [22]. Mean, kurtosis,
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and skewness from SNR units were recorded for 95s, and K-
Nearest Neighbor attained the highest accuracy of 91.3% when
compared to other applied classifiers. The healthy person’s
EEG signal was differentiated from a person suffering from
schizophrenia in [23], and this information was utilized for
training a linear classifier which results in agreeable accuracy
and specificity. A regression analysis model was demonstrated
in [24] that processed segmented data over five frequency
spectrum bands with an accuracy of 87%. EEG signals
obtained from children of growing age from 9 to 12 years
were analyzed in [25] for abnormal brain activity. A hybrid
convolution network R-CNN (Recurrent convolution neural
network) 2D-LSTM CNN delivered the highest accuracy of
72.54% with raw EEG data. Time-frequency combination
plots were proposed in [26] to segregate EEG signals to plot
2D graphs using wavelet transform, SPWV distribution, and
Fourier transform to achieve high accuracy of 93.36% using
a four-layered CNN model. An automatic diagnosis method
to extract non-linear features for selected classifiers was
demonstrated in [27] with the highest accuracy of 92.19% with
SVM-RBF (Support Vector Machine-Radial basis) Function. A
method involving Time- frequency domain-based EEG signal
data with complex interconnected 1D features network was
proposed in [28], which attained 93.06% accuracy with CNN.
Fifteen features extracted from two-dimensional data on a
Cartesian plane using K-Nearest Neighbor classifier excelled
in performance with 94.80% accuracy in [6]. Results were
validated using the 10-fold cross-validating methodology. A
CNN-LSTM-based model was also present in [29], which
reported an accuracy of 99.9%.

TABLE I: Existing techniques and models for schizophrenia
detection using EEG signals.

Author/Year Method Used Accuracy (%)

Johannesen et al. [24]/2016 SVM 87.00
Alimardani et. al. [22]/2018 KNN 91.30
Jahmunah et.al. [27]/2019 SVMRBF 92.19
Pang et al. [28]/2019 MDC-CNN 93.06
Devia et al. [23]/2019 LDA 80.00
Ahmed-Aristizaba et al. [25]/2020 2D-CNN-LSTM 72.54
Khare et al. [26]/2021 SPWVD-CNN 93.36
Akbari et al. [6]/2021 KNN 94.80
Sharma et al. [29]/2022 CNN-LSTM 99.9

C. Novel Contribution of proposed work

1) The problem addressed in the paper: This paper aims
to address the issues of robustness and portability for accurate
schizophrenia detection in remote applications. Is it possible
to design a wearable device for schizophrenia detection, and
if the answer is yes, which data processing technique should
be selected with good performance using edge computing
principles?

2) The challenges encountered in solving the problems:
The main hindrance in addressing the above research issues
is validating the designed model using an actual patient
data set. Due to the medical fraternity’s privacy issues and
ethical regulations, acquiring data sets directly from patients
is challenging. This leaves us with the only option of using
publicly available data sets. Another challenge is to decide

which technique will be suitable for these problems from
Machine learning or Deep learning.

3) The proposed solution to the problem: This work
proposes a novel concept of an easy-to-wear schizophrenia
detection cap that can process EEG signals remotely and
accurately. The proposed CNN-TCN model is used to process
the EEG signals from electrodes placed in the lid using a
processing unit inside the cap. Two different approaches are
implemented using raw EEG data and manually extracted
features.

4) The Novelty in the paper: This is good work for
implementing schizophrenia detection applications in smart
healthcare.

• A new concept of the portable and wearable cap for
schizophrenia detection is proposed for smart healthcare.

• A new hybrid seven-layered CNN-TCN model is
implemented and proposed for schizophrenia detection,
wherein TCN shows superior performance for temporal
sequencing compared to other recurrent networks
implemented in literature.

• The proposed CNN-TCN model also showed good
performance when implemented using five electrodes
only instead of 19 electrodes. This supports the feasibility
of proposed SczCap for real-time implementation.

• The proposed CNN-TCN model is highly robust,
accurate, and reliable in detecting schizophrenia disorder.

• The proposed model’s complexity is less compared to
other implemented machine learning and deep learning
models.

III. THE PROPOSED FRAMEWORK FOR AUTOMATIC
SCHIZOPHRENIA DETECTION

This section explains the proposed framework for
schizophrenia detection, proposed Hybrid CNN-TCN network,
dataset and its pre-processing, and experimental setup used for
experimental analysis. To reduce data latency and transmission
time from source to the processing unit, a concept of
wearable cap is proposed, comprising electrodes for data
acquisition and a processing unit for feature extraction,
classification, and schizophrenia detection. This work proposes
a concept of an easy-to-wear schizophrenia detection cap
(SczCap) for registering real-time EEG signals using the
proposed CNN-TCN model. Figure 3 shows detailed proposed
architecture depicting all the processing units and blocks.
Being portable, the planted EEG electrodes on SczCap assist
health practitioners in collecting a person’s data and persistent
storage on the cloud for later reference. EEG signal is first
sent to the edge processing unit (EPU), which prepares
interpretable results for the IoMT framework. EPU filters
the artifacts from raw received data using the windowing
and normalization process. The proposed CNN-TCN model is
applied to this data for schizophrenia detection. The generated
results can be notified to doctors and patients along with
persistent cloud storage.

A. Proposed Hybrid CNN-TCN Network
Temporal Convolution Networks (TCN) aim for simpler and

automatic modeling predictions along with long-term memory.
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Fig. 3: Proposed architecture for SczCap-based schizophrenia
detection.

However, CNN excels in accurate feature extraction but fails
to address the time lags, and delays resulting in temporal
incoherence. The information transfer in TCN is causal,
ensuring zero data leakage from the previous to subsequent
layer [30]. Fully-connected network (FCN) in 1D ensures that
the length of the output sequence generated is the same as
that of the input in this technique. The causal convolution
model is applied in TCN, which predicts the output at any
time interval to, which corresponds to the input sequence at
the same time to in current and previous layers only. These two
features of TCN ensure its superior performance for temporal
sequencing when compared to recurrent models for sequence
modeling. Also, dilated convolution in TCN helps expand the
receptive field exponentially and gather multi-scale contextual
information without dramatically increasing computing costs
and running time in comparison to RNNs as LSTM or GRU.
This also addresses the linear field size issue of conventional
convolution networks. The dilated convolution layer employs
a size ‘k filter on all the elements in the input sequence with
the dilation factor do. The value of d is exponentially increased
by two as we proceed to the next layer. The output sequences
after dilation at each state are combined with a variable range
filter. The dilation factor decides the step value to be skipped
in the input values sequence and hence applies a filter to a
substantial area. For an input data sequence ‘g’ and filter ‘f,’
convolution operation with dilation is given as:

F (s) = (g ∗do f)(s) =
m−1∑
i=0

f(i).gs−d×i (1)

k is the filter size
do = 2L for a L level network
∗do is used for convolution with dilation
For the TCN model, two convolution layers are implemented
with the dilation method [31], which further relays data
to a rectified linear activation function unit (ReLU) as
shown in Figure 4. Spatial dropout will perform an adaptive
regularization for a given model [32], thereby reducing the
burden of excess weights for generalization. Two holds to
enhance the receptive field’s capacity due to the presence of
two convolution layers.

1) Schizophrenia detection using approach 1 (raw data)
and approach 2 (extracted features): We have used two
approaches, approach 1 and approach 2. In approach 1,
raw EEG data is used with the CNN-TCN model, while
approach 2 uses extracted features. Various studies have been
reported using efficient human brain interfacing methods for
extracted features in CNN [33]. The extracted features from
the proposed model are shown in Table II. EEG signals
are divided into five frequency bands: Delta, Alpha, Beta,
Theta, and Gamma. Total of four feature sets: Statistical
features, Linear features, Wavelet features, and Coherence
features, are categorized for respective EEG segments. For
linear parameters, Power Spectral Density is recorded. For
statistical analysis, 14 features are extracted, as listed in the
table. For feature extraction, wavelet transform decomposes
signals into five selected frequency bands. Finally, coherence
from eight channel pairs is computed. Support vector machine
(SVM), K-nearest neighbor (KNN), and XGBoost classifiers
are used at the end to classify these features.

TABLE II: Feature sets.

Category Features

Statistical Mobility, Complexity, Mean, Absolute mean, Standard
deviation, Absolute standard deviation, variance, range,
maximum, median, minimum, root mean square, skewness
and kurtosis

Linear Power Spectral Density from each EEG band
Wavelet
Feature

Wavelet transform by decomposing signals into five frequency
bands and energy calculation

Coherence From 8 EEG channel pairs

CNN-TCN model implemented here comprises seven layers
whose filter dimensions, layer size, and stride are listed in
Figure 4. Initially, the extracted features are fed to the first
convolution layer with 32 kernels of size [1x15] and stride 2.
It is followed by another convolution layer with kernel 16 of
size [1x10] and stride=1. It is further cascaded to a TCN block
as demonstrated by Bai et al. [34] having 32 filters of size
[1x5] and a dilation factor of (1,2,4). Here, a ReLU activation
function is implemented after each convolution layer. ReLU
function is applied after the first dense layer of 64 units to
replace the negative values in input with zeros. A dropout
layer with a 20% probability is added after the first dense
layer. Finally, the output is classified using the softmax layer,
followed by another dense layer of 32 units.

B. Dataset Used

For this work, publically available EEG data of 14
schizophrenic patients undergoing treatment at the Institute of
Psychiatry and Neurology in Warsaw, Poland, is used along
with EEG data of 14 healthy people [35]. Both the datasets
comprised seven males and seven females with average male
and female ages of 27.9 ± 3.3 and 28.3 ± 4.1 years,
respectively, for schizophrenic patients and 26.8 ± 2.9 and
28.7 ± 3.4 years for healthy people. Data was collected for
fifteen minutes using the international 10-20 standard for EEG
at a 250 Hz sampling frequency rate. O1, O2, T3, T4, T5,
T6, C3, Cz, C4, P3, Pz, P4, Fp1, Fp2, F7, F3, Fz, F4, and
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Fig. 4: (a) Proposed CNN-TCN model structure, (b) TCN with dilated causal convolution.

F8 EEG electrodes were connected to the patients lying in
a resting state with the eyes-closed position. First, a 50Hz
notch filter was used for pre-processing of these EEG data
to eliminate power line noises, and independent component
analysis was done for denoising after performing whitening
with PCA. Then, EEG data from these electrodes was filtered
by a Butterworth filter of 0.2-45 Hz. The signals were then
segmented into small segments which might be considered
stationary. Each segment was normalized with a Z-score before
being sent to a one-dimensional deep convolution network
for training and testing. Each segment had a 25s (19x6250
sampling points) window length.
EEG datasets often exhibit class imbalance, where certain
classes or conditions may have a significantly larger number
of instances than others, which can lead to undesirable
outcomes. Resampling techniques, ensemble methods, cost
sensitive learning, effective feature selection and engineering,
and selection of sensitive evaluation metrics are some methods
that can be helpful in dealing with issue of imbalanced EEG
datasets. Granular computing and random forest algorithm are
indeed valuable methods for addressing imbalanced datasets
and refining data analysis. Granular computing finds the right
balance between capturing important patterns in the minority
class and avoiding overfitting. Similarly, the ensemble nature
of Random Forests allows them to capture the complexities
and interactions in the data, making them well-suited for
imbalanced datasets. The order acceptance decision problem
and process control often involve dealing with imbalanced
datasets, and these techniques can help improve decision-
making and control processes [36]. At last, the choice of
techniques depends on the specific dataset, the research
question, and the available resources.

IV. EXPERIMENTAL RESULTS

The CNN-TCN model proposed in this work is trained and
tested using two approaches: feeding direct EEG data and
extracting features from EEG data. The overall performance of
the models is evaluated in terms of four performance matrices:
Accuracy, Sensitivity, Specificity, and Precision.

A. Parameter Settings

All the experiments and implementations are done on a
workstation with a 2.30GHz processor with 12GB RAM.
Python 3.8.1 language is used for the model designing.
After extensive experimental analysis, the selection of all the
parameters, i.e., the number of layers, filter size, and the
number of filters, is done. Table III presents the performance
comparison of the proposed CNN-TCN (approach1) model
with a variable number of convolution layers and TCN blocks.
This table shows that the proposed CNN-TCN model using
raw data is giving the best performance with two convolution
layers and one TCN block in terms of accuracy and time
taken. The backpropagation algorithm is used to tune the
network weights efficiently, and performance improvement is
ensured by batch normalization. The dropout layer is used for
regularisation and avoiding overfitting. To avoid the overfitting
of the proposed model, a model checkpoint is also used with
early stopping and eight epochs on validation loss.

TABLE III: Performance of proposed CNN-TCN model (approach
1) with a variable number of convolutional layers and TCN block.

Convolution
Layer

TCN Block Accuracy Average
Training
Time (sec)

Testing Time
(sec) for one
sample

1 0 0.426 582 0.0041
2 0 0.712 649 0.0098
3 0 0.95 817 0.035
4 0 0.972 987 0.089
1 1 0.789 661 0.0094
2 1 0.995 824 0.042

TABLE IV: Parameter settings for the proposed model.

Parameter Value

Batch Size 64
Loss Categorical cross entropy
Optimizer Adam
Output Metric Accuracy, specification, sensitivity, precision
Learning rate 0.0001
Epochs 30

Table IV gives setting information of parameters used in
conventional machine learning methods and the proposed
models. The value and type of each parameter has been
selected after extensive literature review and experimental
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TABLE V: Comparison of results using approach 2 (feature-based data). (Best results are highlighted).

Author/Year Method used Number of participants Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

2019 [27], Non Subject-Wise RBF-SVM 14 Normal, 14 Schizophrenia 92.91 93.45 92.24 93.60
2020 [37], Non Subject-Wise ResNet-18-SVM 14 Normal, 14 Schizophrenia 98.60 99.65 96.92 -
2021 [38], Non Subject-Wise MIF-SVM 14 Normal, 14 Schizophrenia 98.90 99.00 98.80 98.40
2022-Present Work, Non Subject-Wise features-SVM 14 Normal, 14 Schizophrenia 94.23 96.62 92.66 91.98
2022-Present Work, Non Subject-Wise features-KNN 14 Normal, 14 Schizophrenia 89.09 90.21 88.56 89.98
2022-Present Work, Non Subject-Wise features-XGBoost 14 Normal, 14 Schizophrenia 93.49 94.10 92.33 92.19
Proposed Work+Subject-Wise Features-CNN-TCN 14 Normal, 14 Schizophrenia 95.89 96.45 95.36 95.41
Proposed Work+Non Subject-Wise Features-CNN-TCN 14 Normal, 14 Schizophrenia 98.89 99.62 98.16 98.18

TABLE VI: Comparison of results using approach 1 (raw data). (Best results are highlighted).

Author/Year Method used Number of participants Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

2019 [39], Non Subject-Wise CNN 14 Normal, 14 Schizophrenia 98.07 97.32 98.17 98.45
2019 [39], Subject-Wise CNN 14 Normal, 14 Schizophrenia 81.26 75.42 87.59 87.59
2020 [40], Non Subject-Wise CNN 14 Normal, 14 Schizophrenia 98.56 98.88 99.05 98.87
2021 [41], Non Subject-Wise L2-CNN-LSTM 14 Normal, 14 Schizophrenia 99.25 98.86 99.73 98.33
2021 [42], Non Subject-Wise LSTM 14 Normal, 14 Schizophrenia 99.00 98.57 - 97.80
2022 [29], Non Subject-Wise CNN-LSTM 14 Normal, 14 Schizophrenia 99.90 100 99.80 99.8
2022 [29], Subject-Wise CNN-LSTM 14 Normal, 14 Schizophrenia 90.11 88.46 91.66 92.03
2022-Present Work, Non Subject-Wise VGG 16 14 Normal, 14 Schizophrenia 93.30 93.19 93.11 93.11
2022-Present Work, Non Subject-Wise AlexNet 14 Normal, 14 Schizophrenia 88.09 87.50 89.59 88.99
2022-Present Work, Non Subject-Wise ResNet 50 14 Normal, 14 Schizophrenia 94.63 93.80 94.44 93.76
Proposed Work+Subject-Wise CNN-TCN 14 Normal, 14 Schizophrenia 96.45 97.66 95.23 95.34
Proposed Work+Non Subject-Wise CNN-TCN 14 Normal, 14 Schizophrenia 99.57 99.51 99.64 99.63
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Fig. 5: Training and Validation accuracy of proposed CNN-TCN
(approach 1) model for non-subject-wise and subject-wise data.

TABLE VII: Gaussian noise effect on performance parameters.

SNR Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)

10 99.01 99.12 99.35 99.01
20 98.92 98.98 99.08 98.81
30 98.73 98.53 98.9 98.23
40 98.59 98.17 98.40 98.03
0 99.57 99.51 99.64 99.63

analysis. The subject-wise testing of the implemented models
is also done along with the non-subject-wise testing. In
subject-wise testing, 28 participants are divided into ten
groups. Out of these ten groups, eight groups hold EEG data of
three subjects each, and rest two groups hold EEG data of 2-2
participants each. Here, the 10-fold cross-validation process is
used to train and test the proposed and all other implemented
model. This labeled data is fragmented into ten equal segments

with similar class label selections throughout the segment. Out
of ten segments, nine records train the model, and data in the
tenth segment will test the model repeatedly ten times [43].
The training and validation accuracy curve of the proposed
CNN-TCN Model (using approach 1) for subject-wise and
non-subjet-wise data is shown in Figure 5.

B. Accuracy assessment of the model

For the raw data (approach 1) and extracted features
(approach 2), the comparison of performance parameters of the
proposed model is listed in Table V and table VI concerning
conventional and implemented models. The performance of
raw data based CNN-TCN model is compared with CNN [39],
[40], LTSM [41], [42] and, CNN-LSTM [29], [41] models
proposed in the literature and three pre-trained models: VGG
16, AlexNet and ResNet 50. The performance of extracted
features based CNN-TCN model is compared with K-nearest
neighbor [44], Support-Vector machine (SVM) [45] and,
XGBoost based models along with other models proposed
in the literature. As evident from the results shown in the

99.57 99.51 99.64 99.63

96.12 96.08 95.99 95.56
98.89 99.62

98.16 98.18

92.98 93.34 92.33 91.9

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Proposed Model (Approach 1)
with all electrodes

Proposed Model (Approach 1)
with 5 frontal electrodes

Proposed Model (Approach 2)
with all electrodes

Proposed Model (Approach 2)
with 5 frontal electrodes

Fig. 6: Performance comparison of proposed model using all
electrodes and five electrodes only.

Figure 7, the performance of the proposed feature-based CNN-
TCN model with 98.89% accuracy, 99.62% sensitivity, 98.16%
specificity and, 98.18% precision supersedes the conventional
KNN, SVM and, XGBoost classifier based models. Although
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Fig. 7: Confusion matrix of proposed model using (a) approach 2 &
(b) approach 1.

Proposed 1 (AUC: 0.996) Proposed 2 (AUC: 0.987) 
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Fig. 8: ROC curve obtained from proposed model using (a) approach
2 & (b) approach 1.

SVM shows improved accuracy of 94.23% as compared to
KNN and XGBoost, it is still comparatively much lower than
the proposed model. The accuracy of 98.90% is reported in
[38] using multivariate iterative filtering (MIF)-SVM method
that is comparable to the accuracy proposed in this work.
The MIF decomposes EEG based on mean frequency and
then non-linear features are extracted from each frequency
component. This gives a good accuracy but significantly
increases the complexity. This also increases the overall time
to run the model in comparison to model with simple features.
For raw data input, an appreciable and highest accuracy of
99.57% is reported along with 99.51% sensitivity, 99.64%
specificity, and 99.63% precision compared to implemented
pre-trained models and other models proposed in the literature.
The classification performance of the proposed model using
approach 1 and approach 2 is also shown in Figure 8 using
ROC curves. Although the results presented by [29] are
slightly close to the proposed CNN-TCN model, the proposed
model is showing much better overall performance in terms of
complexity, training, and testing time as given in the Tables
below. It is because of the parallelized convolution in TCN,
unlike LSTM or GRU. It proves the superiority of the proposed
CNN-TCN model for accurately diagnosing a person who has
Schizophrenia when processed with raw EEG data.
As reported in [29], the EEG signals from the frontal part
of the brain can give comparable results instead of using all
electrodes. So, an experiment is also conducted in this work
to detect Schizophrenia using only five electrodes from the
frontal part of the brain. Results for the same are given in
Figure 6.

TABLE VIII: Complexity comparison of proposed CNN-TCN
(approach 1) model with other implemented models.

Models Convolution
Layer

Fully
Connected
Layer

Learnable
Parameters

Filter
Size

Training
Time
(sec)

VGG16 13 3 138M 3 17,849
AlexNet 5 3 62M 3, 5, 11 11,336
ResNet50 50 1 25M 1, 3, 7 8,970
CNN 4 3 0.65M 15, 10, 10 987
CNN-LSTM
[29]

2+1(LSTM) 3 0.88M 15, 10, 32 1289

Proposed
CNN-TCN

2+1(TCN) 3 0.48M 15, 10, 5 824

C. Robustness assessment of the model

The model is tested for robustness for performance
comparison using approach 1 and approach 2 for schizophrenia
detection with the addition of Gaussian noise at multiple
levels. Several parameters regulate the proposed CNN-TCN
structure. The best model parameters are achieved through
trial and error for the highest performance. Furthermore, to
increase the reliability of the proposed system, Gaussian noise
is added to the signals at different levels of SNRs (Signal to
noise ratio) 10, 20, 30, 40, and results for the same are reported
in Table VII. As evident from the table, only minor changes
are visible in output results with a gradual increase in noise
levels. It establishes the robustness of the proposed model for
schizophrenia detection.

D. Complexity assessment of the model

The number of learnable parameters of that network or the
time taken measures the complexity of any neural network.
Table VIII presents the complexity comparison of the proposed
CNN-TCN and other implemented models in terms of
learnable parameters and average training time in ten folds. It
shows that the proposed CNN-TCN model is less complex than
the other compared models as it only has 0.48M Learnable
parameters and 824 seconds of average training time over ten
folds. The training of the LSTM network is relatively slow
compared to TCN because of non-parallelized computation,
which further increases the computation complexity. TCN net-
works also capture much less complex temporal information
by utilizing a backpropagation path.

V. DISCUSSION

This work presents the first-ever concept of a portable
and wearable device, SczCap, for schizophrenia detection
using EEG signals in smart healthcare applications. The EEG
signals are electrical activities of the brain which are very
informative, and with recent advancements, the availability
and measurement of these signals have become much easier.
As the main idea of this paper is to propose a concept of
wearable device for schizophrenia detection, the issues related
to complexities, robustness, and portability while maintaining
high accuracy are addressed in this work. The conventional
machine learning methods such as SVM, KNN, and XGBoost
utilizing different time and frequency features did not perform
so well in differentiating normal and schizophrenia patients
and made the whole system more complex. There are
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two approaches implemented in this work, In approach 2,
primary features are extracted manually and secondary features
using CNN. This reduces the feature spectrum and overall
performance also get effected. In approach 1 using raw data,
the features are extracted from the complete dataset using
CNN only and these features are then fed into TCN, this
increases the performance as all the important features are
explored. The CNN-TCN model using raw data reported high
accuracy, sensitivity, specificity, and precision compared to
other implemented and proposed models in the literature. For
all the implementations and experiments, a publicaly available
EEG dataset [35] is used and a concept of wearable SczCap is
proposed in smart healthcare. The proposed CNN-TCN model
used in the SczCap concept uses seven layers and took 824
seconds of training time, which is relatively less than other
implemented models. An experiment using different SNRs was
also conducted for the proposed model using raw EEG and
reported high robustness against noise.
The proposed model is designed after experimenting with
several parametric settings for accuracy and time taken. The
proposed model is also implemented using five electrodes only
instead of 19 electrodes and reported good accuracy of 96.12%
using approach 1 and 92.98% using approach 2. This supports
the portability, reliability, and feasibility of SczCap in remote
applications. Three pre-trained networks, VGG 16, Alexnet,
and ResNet 50, were also implemented on the exact data for
better and more fruitful comparisons and reported the accuracy
of 93.30%, 88.09%, and 94.63%, respectively. The model
was trained using both non-subject-wise and subject-wise split
data using both approaches and reported good results, which
support the model’s generalization. The results reported in
this work are optimistic, and the real-time implementation of
SczCap can benefit humankind in the future.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated the performance of a seven-
layered CNN-TCN model to accurately detect the presence
of schizophrenia disorder in a person using a device named
SczCap, a schizophrenia detection cap. The CNN model
with excellent feature extraction capability is augmented
with a TCN block for enhanced machine-learning modeling.
Although the data set is small, the results are validated by
a 10-fold validation process to establish the authenticity of
the results. The exceptional accuracy of 98.89% and 95.89%
for non-subject-wise and subject-wise data using extracted
features-based approach and 99.57% and 96.45% for non-
subject-wise and subject-wise using raw data indicated the
usability of this model for schizophrenia detection.
A negligible effect of gaussian noise on this model proves it a
viable candidate for helping professional health practitioners
in early detection. Another remarkable feature is the ability
of the model to give highly accurate and reliable results even
with raw EEG data and removes the overhead of extracting
features for schizophrenia detection. Data security features
are not explored in this work and can be considered for
future endeavors. To further increase the useability of the
proposed model for smart healthcare applications, advanced
data security protocols can be implemented.
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