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Abstract Approximately 50 million people worldwide
are impacted by epilepsy, necessitating the development
of a seizure detection system that is low-power, low-

latency, and capable of providing accurate and real-
time monitoring to address the issue. In this paper, a
low-power wearable device for epilepsy has been pre-
sented that uses a novel pulse exclusion (PEM) al-

gorithm to characterize seizure and normal activities.
PEM resolves the issue of heavy computational burden
by reducing the number of channels or features. The

feature vectors of reduced size become input to an op-
timized deep neural network (DNN) classifier for seizure
identification. The proposed PEM-based approach has

been extensively validated with 10 epileptic subjects ob-
tained from the CHB-MIT Scalp datasets. PEM in com-
bination with DNN classifier shows huge potential in
eliminating false detections, and the average specificity

of the specified subjects is recorded as 100%, which may
be useful for seizure detection and subsequent epilepsy
treatment.
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1 Introduction

The conventional healthcare system is inadequate for
the expanding population, but modern smart health-

care that utilize Internet of Medical Things (IoMT)
technology has the potential to improve the current
healthcare system and cater to the rising demand [1–

3]. Smart healthcare systems are built on a network of
biomedical applications and devices known as the In-
ternet of Things (IoT), with the goal of improving the
quality and experience of the user [4,5]. An example of

how healthcare can be made smarter is through the use
of automated seizure detection.

Epilepsy is a condition of the nervous system
marked by recurring seizures. Approximately 1% of
the global population is afflicted with this disorder.
Epilepsy has a devastating impact on the quality of

life. Epileptics cannot perform daily activities and lead
normal life [6–8]. In contrast to the general popula-
tion, people with epilepsy are more susceptible to sud-
den unexplained deaths (SUDEP). Epilepsy may affect
breathing and reduce the oxygen level in the blood,
which creates a dangerous situation such as suffocation

and lead to death. It may also alter the heart rhythm
and cause cardiac arrest. Every year, one in a thou-
sand patients with epilepsy dies from SUDEP [9]. Dif-
ferent treatments exist for epilepsy, such as antiepileptic
drugs (AEDs), surgery, deep brain stimulation, respon-
sive neurostimulation, external nerve stimulation, and
focal drug delivery. Drug-resistant patients do not ben-
efit from AEDs, even though they can be taken orally
to treat epilepsy. Surgery has the potential to harm the
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eloquent cortex [10,11]. Therapies can be useful, but
they are expensive and time-consuming. Automated de-
tection of seizures is gaining importance in addressing
epilepsy.

Different clinical tests exist for epilepsy diagnoses,
such as magnetic resonance imaging (MRI), electro-
cardiogram (ECG), magneto-encephalogram (MEG),
or electroencephalogram (EEG). For the precise diag-

nosis of epilepsy, the EEG’s excellent temporal res-
olution is beneficial [12,13]. Electroencephalography
(EEG) records neural activity in terms of electric volt-

age. The amplitude of the voltages varies for different
psychological states, and EEG can be used to identify
the varying state of the brain. Electrodes as a cap have

been placed safely and painlessly across various brain
zones to monitor brain activity. The traditional and
manual way of seizure detection through clinical tests
is becoming obsolete and inconvenient to the user and
medical professionals. In the manual diagnosis, a sub-
ject may need to wear a cap for several hours to a few
days, and massive amounts of data are recorded on the

database. An expert can analyze the data and locate
if there is any abnormality. The user is notified later
about the abnormality. The whole process may take a
few weeks and costs a lot of money [14].

The article outlines a system for detecting seizures
in real time that utilizes the Internet of Things (IoT). A
module of the proposed approach is illustrated in Fig 1.
The research problem and potential solution have been
discussed in Sec.2. Existing algorithms for seizure iden-
tification have been presented in Sec. 3 . The math-
ematical model of the PEM and DNN classifier are
illustrated in the Sec. 4. Sec. 5.1 shows the Simulink
structure of the proposed algorithm and describes each
block. Sec. 5.2 presents a dataset for 10 epileptic sub-
jects and discusses the results. Sec. 5.2 discusses possi-

ble integration with seizure prediction and cybersecu-
rity.

2 Problem Statement and proposed Solution

2.1 Problem Statement

1. One of the drawbacks of the existing epileptic seizure
detector is that the false detection rate is relatively
high, which hinders epilepsy treatment through drug
delivery or stimulation process. A synchronous seizure

control system stops the seizure development by stim-
ulating the onset area or drug injection. False de-
tection enables unnecessary drug delivery or stim-

ulation process to the onset area, which essentially
reduces the volume of the drug. The device life of
an implantable device is a crucial factor, as frequent

implantation through a non-invasive approach is in-
convenient to the user.

2. Power usage is a crucial parameter for wearable or
implantable devices as the device’s life depends on

power usage. Existing literature mainly focused on
improving the accuracy of the classification. Few al-
gorithms were presented to address the issues with
power consumption. The recorded active power us-
age of those algorithms is high. How is low-power
seizure detection possible with a minimum false de-
tection? This question has been addressed in this

paper.

2.2 Proposed Solution

1. The deep learning (DL) method uses many func-
tions to examine EEG signals and eliminate extra-
neous pulses and noise. When DL algorithm is used
alone, it provides a specificity around 90%. The rea-

son behind the issue is that EEG signals contain
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noises of varied frequency and amplitude. Human
emotions also constitute false detection.

2. To solve this problem and to improve the specificity,
a combination of DL and PEM has been utilized to
get the best possible true negative rate. PEM sim-
plifies the EEG signals by assigning 0’s and 1’s in
the ictal and normal EEG regions, eventually mak-
ing the seizure and non-seizure activities more dis-
tinguishable. There is a noticeable improvement in
specificity when EEG signals are first processed us-
ing PEM and classification is carried out using DL.

2.3 Novel Contributions of This Work

1. The proposed PEM effectively accumulates the de-
sired number of 0’s, and 1’s in the targeted brain
area and eradicates unneeded pulses. Using both
PEM and DNN provides better distinction among
different EEG activities and enhances the specificity
of the detection. The simplified EEG structure leads

to a reduction in features which decreases the la-
tency of the system.

2. PEM reduces the necessity of heavy feature size,
which requires a smaller number of functions to cap-

ture EEG dynamics. A smaller set of functions en-
ables the system to be implemented using simple
circuitry and leads to a considerable reduction in

active power usage.

3 Related previous research

Several algorithms have been proposed for seizure iden-
tification. A deep learning (DL) based early detection 
approach [21] has been introduced that uses synthetic 
minority techniques to balance the sampled EEG data 
and convolutional neural network (CNN) with trun-
cated backpropagation to extract temporal and spatial 
features. It overcomes the issue of computational com-
plexity with a conventional DL-based approach. Hand-
crafted features have been combined with automated 
features to characterize abnormal behavior [6]. The pro-
posed hybrid model provides better accuracy compared 
to the hand-crafted method alone. An EEG-based early 
detection scheme [3] has been presented that uses mul-
tichannel EEG recordings. The features have been de-
rived from the Flower Pollination Algorithm (FPA) which 
is later submitted to the convolutional neural network 
(CNN) for seizure identification and feature labeling. 
A residual network has been extended with mean am-
plitude spectrum (MAS) to combine the temporal and 
spatial relevance of EEG channels. The proposed model 
[22] fully represents the varying activities of the brain.

The spatio-temporal features significantly enhance the 
performance of epileptic seizure detection. Stack au-
toencoder and random vector functional network [23] 
have been applied to characterize abnormal EEG ac-
tivities. The unsupervised features have been extracted 
using stack autoencoder and fed to the functional net-
work for seizure classification. The adjustment of the 
cost function enables efficient training and improves de-
tection accuracy.

Nested Long Short-Term Memory (NLSTM) based 
approach [13] has been presented that analyzes tem-
poral dependencies and determines high-rank features. 
The features have been fed to softmax layer for fea-
ture classification. This method does not require heavy 
pre-processing of EEG data, which is useful for low-
latency biomedical applications. Adversarial Represen-
tation Learning (ARL) based patient-independent and 
robust seizure detection model [24] is proposed. The 
complex deep neural network (CDNN) model uses the 
ARL to capture the dynamics of EEG signals during 
seizures and non-seizure periods. The effectiveness of 
this method was assessed on the TUH EEG dataset, 
and the findings i ndicate a  s ignificant re duction in  la-
tency. The non-linear property of the epileptic signals 
has been retained by a unified m odel [ 13], w hich ex-
tracts time and frequency domain features. The model 
is assessed with a large set of datasets and results in a 
better performance. Intracortical microelectrode arrays 
(MEAs) can help in the early detection [25] of epilep-
tic seizures in humans. The use of nonlinear support 
vector machines (SVMs) is utilized to differentiate be-
tween features that are indicative of a seizure and those 
that are not. The utilization of intracortical MEAs may 
have the potential for synchronous seizure control. The 
use of Stockwell transforms (S-transform), and bidi-
rectional long short-term memory (BiLSTM) is incor-
porated to obtain time-frequency blocks and classify 
seizures [26]. The enhancement in the detection perfor-
mance is achieved by processing the EEG signals after 
they have been acquired.

A wavelet packet decomposition (WPD) based ap-
proach [27] is proposed to create multiview features 
which are then applied to a convolutional neural net-
work (CNN) to capture the characteristics of deep fea-
tures. The method enhances identification accuracy and 
reduces the dimensionality of the feature vector. The 
EEG-based data acquisition approach requires electrodes 
to be placed on the scalp or brain, which requires a 
considerable amount of time and effort. An accelerome-
ter sensor, a non-invasive method [28], captures seizure 
activities, which resolves the issues with existing in-
vasive seizure detection approaches. Passive InfraRed 
(PIR) sensors [29] detect seizure activities by track-



4 Sayeed, Nasrin, Mohanty, and Kougianos

Table 1: Assessment of the proposed approach in comparison to the existing methods

Reference Methods Employed Latency
(sec)

Sensitivity
(%)

specificity
(%)

IoMT
Frame-
work

Yedurkar et al. (2023) [3]
NA 97.85 98.38 NA

Guo, et al. (2022) [15] NA 95.55 92.57 NA

Peng, et al. (2021) [16] NA 95.38 94.33 NA

Song, et al. (2020)[17] 7.1 100 NA NA

Olokodana, et al. (2020)
[18]

0.85 87.6 NA Yes

Sayeed, et al. (2019) [12] 3.6 96.9 97.5 Yes

Fan, et al. (2019) [19] 6 98 NA NA

Wu, et al. (2019) [20] NA 99.41 82.98 NA

Sayeed et al.
(2023)[current paper]

Flower polination algorithm and convolu-
tional neural network (CNN)

Reduction in heavy computation and data 
labelling through UL and seiZURE identifi-
cation by SL

Sparse representation of EEG data seg-
ments and dictionary learning

Model driven method to characterize dy-
namic features and identify seizure activi-
ties

Extracting fractal dimension features using 
discrete wavelet transform (DWT) and krig-
ing model for classification

An amplitude level detector and a signal re-
jection algorithm (SRA) for seizure onset 
detection

Temporal synchronization and feature ex-
traction to track the recurrence pattern of 
normal and ictal activities

Combination of continuous EEG and ampli-
tude EEG, multi-domain features, and Ran-
dom forest classification
Optimized pulse exclusion mechanism for 
feature reduction and deep neural netwrok 
(DNN) for feature classification

0.96 98.2 100 Yes

ing the body’s movement. Distinguishing between body
movement during an epileptic seizure and normal sleep
can be accomplished by machine learning algorithms.
The distinct body movement patterns are identified by
combining a hidden Markov model (HMM) and a con-

volutional neural network, with data collected from a
PIR sensor being fed into these models for classifica-
tion. The recurrence pattern of seizure and non-seizure
characteristics is quantified using a spectral graph. The
proposed temporal synchronization-based approach [30]
leads to an increase in seizure detection accuracy. The
local mean decomposition (LMD) based seizure detec-

tion approach divides the EEG signals into multiple
product functions, and features are taken from each
function which is then fed to different classifiers to eval-
uate the accuracy.

A technique that relies on PEM and utilizes a small
dataset was introduced in the previous work [31]. How-
ever, the method necessitates validation using a vast
amount of data. The proposed method is thoroughly

validated by utilizing a broad set of EEG datasets.
This paper uses an optimized PEM in combination with

DNN classifier, which significantly reduces the false de-
tection and latency of the system. Table 1 demonstrate
that the proposed method improves current state of the
art and makes a valuable contribution to the develop-

ment of smart healthcare systems.

4 The Proposed Seizure Detection Approach

The EEG data acquired from the data acquisition sys-
tem is applied to the pulse exclusion mechanism (PEM).
PEM processes the EEG data in two steps. In the first
stage, EEG samples of low amplitudes were eliminated
using a level detector, and in the second stage, the un-

necessary EEG samples were further eradicated using
PEM algorithm. The features of non-seizure and seizure
activities were recorded and applied to DNN classifier
for seizure identification. The detection system is con-
nected to the IoT framework, which allows medical data
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to be recorded on the cloud [32]. Proposed architecture
and flowchart have been illustrated in Fig. 2 and Fig.

3, respectively.

4.1 Time Frame Formation

A biomedical wearable or implantable chip should be
able to monitor individuals in real-time. Data could be
analyzed offline for important feature extraction, and
the chip is trained with limited training vectors. In the

real-time classification phase, the bulk amount of test-
ing data is analyzed and only a limited number of fea-
tures were formed in the testing vector, which was then
fed to the classifier for seizure detection. One of the
issues addressed in the current paper is the real-time
monitoring and analysis of EEG signals from station-
ary EEG data. The question is how to use stationary
EEG data for real-time analysis. The real-time EEG
data monitoring is performed using a continuous 6-
sec moving window. The moving window captures the

seizure propagation at a certain time. The window of a
lower length decreases the detection accuracy, whereas

a higher length window increases the accuracy. The de-
tection latency is inversely proportional to the window
length. 6-sec window provides enough samples that can
accurately capture seizure progression along a signal
with a reasonable delay. Each moving window consists
of three segments of 2-sec duration. The following ex-
pression computes the total elements N in a certain
feature vector [33].

N = B.P.C (1)

Where, B is the total feature, P indicates EEG seg-
ments, and C is the number of channels in the data

acquisition system.

4.2 Pulse Exclusion Mechanism (PEM) for feature
reduction

4.2.1 Level Detector (LD)

Distinctive amplitudes and a certain frequency range
can characterize the samples at the seizure onset point.
Raw EEG signals are associated with low-frequency
noise and redundant pulses. LD employs a band pass
filter which keeps EEG signals within 0 to 30 HZ fre-

quency and eradicates EEG samples outside the given
frequency range. A sudden increase in amplitude marks
seizure onset. For a certain epileptic subject chb01, the
normal EEG activities span from 0 µV to 500 µV, and
during seizure activities, the amplitude has been in-
creased from 0 µV to 1000 µV. LD introduces mini-
mum and maximum voltage to extract the distinctive

amplitude ranges. LD keeps the EEG samples that fall
within the desired voltage range. LD is the first step in
eliminating unwanted samples. They are further elim-
inated by PEM algorithm. The desired pulses can be
obtained using the following expression [31,34]:

S(n) =

{
1, for Sup > S(l − 1) > Slow

zero, otherwise,
(2)
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The hyper-synchronous signal can be identified by
its amplitude range, which is defined by the minimum
(Slow) and maximum (Sup) values.

4.2.2 Pulse Exclusion Mechanism

PEM analyzes EEG signals and creates two distinctive
regions: pulse and non-pulse regions. A pulse (1) marks
a biomedical abnormality in the EEG signals, and reg-
ular EEG activity is characterized by a non-pulse (0).
The output of LD in the region with seizure activi-
ties contains a significant number of 1’s, whereas the
area with normal EEG possesses a higher number of 0’s.
PEM reduces 0’s in the seizure region, and 1’s in the
non-seizure part. The seizure region contains a higher
number of 1’s, and a greater number of 0’s is occupied
in the normal EEG region. The transient analysis of the
EEG signals demonstrates that the two areas are dis-
tinguishable. PEMmakes EEG signals more distinctive,
which requires fewer features or channels to distinguish

seizure and normal activities. It is also observed that
brain behavior can be altered by emotional activities
(laughing, crying, stress, sneezing). The pulse elimina-
tion through LD and PEMmaintains the false detection

at a minimum level.
Non-seizure region can be expressed as:

S(n) =


0, S(l − 6) = 0 or S(l − 5) = 0

or S(l − 4) = 0, if S(l − 3) = 0 (3)

1, otherwise.

The accumulation of 0’s can be optimized by:

S(n) =


0, S(l − 5) = 0 or S(l − 4) = 0

or S(l − 3) = 0, if S(l − 2) = 0 (4)

1, otherwise.

Seizure region can be represented as:

S(n) =


1, S(l − 6) = 1 and S(l − 5) = 1

and S(l − 4) = 1, if S(l − 3) = 0 (5)

S(n) =



0, otherwise.

The accumulation of 1’s can be optimized by:

1, S(l − 5) = 1 and S(l − 4) = 1
and S(l − 3) = 1, if S(l − 2) = 0 

0, otherwise.
(6)

In the earlier work, the accumulation of 1’s and 0’s 
was constituted using three neighboring samples. The 
proposed approach utilizes four or more neighboring 
samples to create 0 and 1 region, which is more effective 
for distinguishing seizure activities.

4.3 Deep Neural Network (DNN) Classifier

Hidden layers
Input

layer 

Output

layer 

1st

Feature

2nd

Feature

nth  

Feature

Fig. 4: Deep neural network with more than two hidden 
layers

A neural network that has multiple hidden layers
and follows the conventional multilayer perceptron struc-
ture is referred to as a deep neural network (DNN) [35,
36]. The structure of a deep neural network is illustrated
in Fig. 4.

In this network, denoted as DNN, the total number

of hidden layers is represented by N, and each layer is
characterized by the function gj . The input and out-
put layers are represented by layers 0 and N+1, respec-

tively. The output vector is computed using the follow-
ing equations:

gj = f(W jgj − 1 + biasj) 0 < j < N. (7)

In the equation, the weight matrix is denoted as W j

and the bias vector as biasj . Sigmoid transformation
can be expressed as:

f(h) =
1

1 + e−h
(8)

Assume, the training set S = (xc, yc) comprised of d 
sample points, where the the input vector xc is 
associated with the posterior probability of yc. The 
Frobeneius norm of matrix W is represented by |W |2F , 
while λ stands for a scalar value.The cost function can 
be optimized as follows [14]:

J(W, bias; S) =
1

d

d∑
c=1

J(W, bias; xc, yc) + λ|W |2F (9)

5 Implementation and Validation of the
Proposed System

5.1 Implementation of the Proposed System

The diagram in Fig. 5 illustrates the system-level overview
of the proposed system for detecting seizures. The EEG
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signals were brought into the Simulink workspace and
fed into the PEM. Simulink user-defined functions were
employed to design the structure of the PEM. The fea-
ture vectors minimized from the designated timeframe
were consistently given to the DNN classifier. The dataset
was chosen randomly from different epileptic individ-
uals, and the interictal activities constitute the major
portion of the training. The system’s training time does
not impact the overall latency because it is conducted
offline. The primary source of delay is attributable to
the testing time and the length of the testing vectors.

To illustrate the PEM operation clearly, 10 samples

have been chosen from the ictal and normal EEG areas.
In the beginning, the samples at the seizure area are
1010101011, which includes six 1’s and four 0’s. PEM
tends to convert all the remaining 0’s to 1’s. After the

execution of PEM in the first and second iterations,
the area should be 1110111011 and 1111111011, re-
spectively. The resulting PEM output contains nine 1’s

and one 0, 1 prevails in this area, indicating a seizure.
Let’s consider the samples at the normal EEG area is
0010101001, which consists of six o’s and four 1’s. Ap-

plying PEM to the non-seizure area leads to a conver-
sion of 1’s to 0’s. The resulting samples become 0000000000,
which can be distinguished from the abnormality. Table
2 illustrates PEM mechanisms for a specified number

of samples.

Table 2: Analysis of PEM output

Iteration Seizure area Non-seizure area

1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1
2 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0
3 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

One critical aspect of performance for biomedical
sensors is power usage, which must be minimized to
prolong battery life. The proposed system is viewed as
a black box to compute the power consumption and

applied to an additional Simscape circuitry for power
measurement. EEG signals of varying individuals be-
came an input to the power measurement circuitry. The
power consumption for varied input EEG signals was
measured, and the resulting data were averaged to yield

the actual power consumption. The Simulink-PS con-
verter links the proposed Simulink model to the Sim-
scape network. The power measurements tools, such as
the current sensor, voltage sensor, and voltage source
have been contained in the Simscape environment. The
connection between Simscape output and a Simulink
block is facilitated by a PS-Simulink converter [37]. The
voltage and current data is obtained through the volt-
age and current sensor, which is then used to assess the
system’s total power usage.

ThingSpeak, an open data platform, incorporated
IoT devices and established two separate channels: one

for EEG recordings of patients and another for seizure
recordings and relevant information. While the EEG
channel stored patient EEG recordings, the seizure chan-

nel exclusively held seizure recordings and associated
useful information.

5.2 Validation With CHB-MIT Scalp Dataset

The CHB-MIT EEG data [38] is selected for the pur-
pose of validation. Table 3 contains details of the pa-
tients’ age, gender, and seizure, including six female and

four male participants.

Table 3: Epileptic Patient’s information

Epileptic
Sub-
ject

Subject’s Gender and
age

Quantity
of
seizures

chb01 Female - 11 years 7
chb02 Male - 11 years 3
chb03 Female - 14 years 7
chb04 Male - 22 years 4
chb05 Female - 7 years 5
chb06 Female - 1.5 years 10
chb07 Female - 14.5 years 3
chb08 Male - 3.05 years 5
chb09 Female - 10 years 4
chb10 Male - 3 years 7

Total No. of seizures: 55

Fig. 6 depicts transient analysis of EEG signal for

epileptic subject chb01 18. The samples have an am-
plitude lower than 300µV prior to the seizure start-



8 Sayeed, Nasrin, Mohanty, and Kougianos

ing point. However, during ictal activity, the amplitude 
level increases to 800 µV. This indicates that the be-
ginning of the seizure is linked to a discharge of high 
amplitude. Epileptic brain activity can result in irreg-
ular amplitude patterns within frequency bands. For 
instance, seizure activity may give rise to sudden am-
plification or reduction in amplitude within designated 
frequency ranges. To remove unwanted pulses and in-
correct detections from EEG signals, a band pass filter 
of frequency range (0-30)Hz is employed [39,14] The re-
sulting signals include EEG signals from 23 channels, 
which are fed into PEM to remove unimportant chan-
nels and shrink the feature size.
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Fig. 6: Transient analysis of EEG Signals at channel 10 
(1550 sec - 2050 sec)

PEM reduces the necessity for a large number of 
channels and features that can capture EEG behavior. 
PEM employs limited functions to analyze EEG signals 
and extract weighted channels and features to differen-
tiate EEG activities. A high-amplitude discharge, also 
known as a hypersynchronous discharge, occurs in the 
onset area of a specific frequency limit during a seizure. 
The occurrence of this high-magnitude discharge results 
in a greater number of 1’s being present in samples 
taken from areas that are prone to seizures. In con-
trast, the non-seizure area has a larger number of 0’s as 
the normal EEG area is dominated by low amplitude 
pulses. In this context, 1 refers to pulses that exceed the 
amplitude threshold of the epileptic individual, whereas 
0 signifies that the pulses are below the threshold level. 
The amplitude threshold detects the hypersynchronous 
discharge and creates a likeness in a specific segment of 
the EEG.

The samples at the ictal and normal EEG area have 
been converted to 0’s, and 1’s according to the thresh-
old set by hypersynchronous discharge. When PEM ex-
tracts samples of a particular time frame, it sets the

samples to 1 if 1 prevails in the surrounding areas, and
0 is set to a particular sample if 0 is leading. The count-
ing of 0’s and 1’s is conducted through two different
counters. Two counters, A and B, have been employed
to count the number of 0’s and 1’s in a particular time
frame. For example, a time frame contains 1000 sam-
ples, counter A value is 800, and counter B value is 200.
It means that 1 prevails in this time frame, and the pro-
gression of associated signals indicates seizure. Assume
another example in which B value is higher than A; B
is 900, whereas A is 100. B is dominant, which suggests
that the specified time frame indicates a non-seizure.
Certain human actions like stress, sneezing, or emo-
tional responses can generate samples of similar ampli-
tude to hypersynchronous pulses, leading to incorrect
detections. To overcome this issue, the PEM algorithm
includes a frequency range between 0 and 30 HZ, which
helps to eliminate false detections. Fig. 7 shows the
PEM output for a normal EEG signal, whereas Fig.
8 depicts the PEM output for seizure activities.

EEG signals were utilized and analyzed during the
feature extraction to generate statistical features. These
features were then compiled into feature vectors for a

particular time. To determine the size of the feature
vector, the result can be computed by multiplying the
number of features, channels, and non-overlapping EEG

epochs. The feature vector had 8 x 23 x 3 = 552 ele-
ments in each time frame when PEM was not consid-
ered. PEM eliminates five features and keeps three fea-
tures for feature vector formation. Twenty-three chan-

nels shrink down to eight. When PEM is employed, the
feature vector size is reduced to 3 x 3 x 3 = 27 elements
for the 6-sec moving window. Eight hours of normal and
interictal data and 70% of seizure instances were used
to train the DNN classifier. Training the data offline in-
volves using feature vectors from the time frames, and

this process demands a considerable amount of training
time. The testing of seizures is done online in real-time
using reduced-size training and testing vectors.

The accuracy and latency of the detector have been
measured and compared for both 6-sec and 9-sec time
frames. A time frame with a longer period contains
more samples compared to a time frame with a shorter
period. A longer time frame has enough samples to cap-
ture seizure progression, which is useful for accurate
detection. While a 9-second time frame offers excellent
sensitivity and specificity of more than 98%, it suffers
from the drawback of having higher latency. However,
a time frame of less than 3-sec improves the delay, but
the drawback is that it sharply reduces the system’s ac-
curacy. By utilizing a medium-length time frame of 6
seconds, it is possible to overcome the challenges related

to sensitivity and latency, resulting in optimal perfor-



Title Suppressed Due to Excessive Length 9

1550 1552 1554 1556 1558 1560 1562 1564 1566 1568 1570
Time (Sec)

-150

-100

-50

0

50

100

150

A
m

pl
itu

de
 (

V
)

(a)

1550 1552 1554 1556 1558 1560 1562 1564 1566 1568 1570
Time (Sec)

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Fig. 7: Transient analysis (a) Normal EEG signals (1550 sec - 1570 sec) (b) PEM output (1550 sec - 1570 sec)
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Fig. 8: Transient analysis (a) Seizure activities (1720 sec - 1740 sec) (b) PEM output (1720 sec - 1740 sec)
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Fig. 9: Variation of latency for each epileptic subject

mance. The measurement for active power consumption
is recorded at 126 µw.

Fig. 9 shows the detection delay for each individual
with epilepsy. Latency is calculated from two different
structures. The first setup did not include PEM, and
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Fig. 10: Variation of sensitivity for each epileptic sub-
ject

the extracted features were directly applied to DNN
for classification. It reported an average delay of 2.35
sec. In the second setup, the extracted features were
shurnk using PEM, and later they were submitted to
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DNN for detection. The PEM-based structure reported
a reduced delay of 0.96 sec. Incorporating PEM signifi-
cantly decreases the total latency. PEM employs simple
and uncomplicated functions that entail minimal com-
putation. The individual with epilepsy labeled as chb03
has the shortest latency, which is 0.3 sec, whereas chb04
has the longest delay of 2.9 sec. The average sensitiv-
ity is less than 95% when PEM is not incorporated.
PEM inclusion raised the average sensitivity to 98.2%.
Fig. 10 shows average sensitivity for each individuals.
Proposed system is characterized in Table 4.

Table 4: Proposed eSeiz 2.0 Characterization

Parameter Value

Sampling rate 256 Hz
Sensitivity (DNN Classifier) ≤92%
Sensitivity (PEM + DNN Classifier) 98.2%
Specificity (DNN Classifier) ≤95%
Specificity (PEM + DNN Classifier) 100%
Latency (DNN Classifier) 2.35 sec
Latency (PEM + DNN Classifier) 0.96 sec
Power usage 126 µw

6 Conclusions and Future Work

This article introduces an optimized PEM algorithm 
that has been tested and validated for its ability to 
identify seizures efficiently and accurately in real-time. 
PEM uses simple functions iteratively to remove redun-
dant pulses, features, and channels, which eventually 
shrink the size of the feature and lead to a sharp reduc-
tion in computation time and the system’s delay. The 
proposed system demonstrated a specificity of 100%, 
and a delay of 1.05 seconds, resulting in a notable ad-
vancement over the current state-of-the-art approaches.

The potential area of future research is seizure pre-
diction which is gaining importance and will be ex-
plored. If a seizure can be predicted before its occur-
rence, it can be prevented by applying different seizure 
termination techniques such as drug injection, respon-
sive neurostimulation, or electrical stimulation. The 
pro-posed model will be analyzed for seizure 
prediction. To validate its efficacy in predicting 
seizures, the proposed model will undergo analysis using 
both scalp and icEEG databases. Another potential 
future application for the proposed system is 
enhancing security measures [40], particularly given 
that healthcare devices often contain highly sensitive 
financial and healthcare information. Measures for 
enhancing the system’s robustness and se-curity will be 
explored.
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