
SUBLOCK: SUB-CIRCUIT REPLACEMENT BASED INPUT
DEPENDENT KEY-BASED LOGIC LOCKING FOR ROBUST IP

PROTECTION

A PREPRINT

Vijaypal Singh Rathor
Department of CSE

PDPM IIITDM Jabalpur
India, 482005

vrathor@iiitdmj.ac.in

Munesh Singh
Department of CSE

PDPM IIITDM Jabalpur
India, 482005

munesh.singh@iiitdmj.ac.in

Kshira Sagar Sahoo
Department of Computing Science

Umeå University, Umeå
Sweden, 901 87

kshirasagar12@gmail.com

Saraju P. Mohanty
Department of CSE

University of North Texas, Denton
TX, USA, 76207

saraju.mohanty@unt.edu

June 28, 2024

ABSTRACT

Intellectual Property (IP) piracy, overbuilding, reverse engineering, and hardware Trojan are serious
security concerns during integrated circuit (IC) development. Logic locking has proven to be a
solid defence for mitigating these threats. The existing logic locking techniques are vulnerable to
SAT-based attacks. However, several SAT-resistant logic locking methods are reported; they require
significant overhead. This paper proposes a novel input dependent key-based logic locking (IDKLL)
that effectively prevents SAT-based attacks with low overhead. We first introduce a novel idea of
IDKLL, where a design is locked such that it functions correctly for all input patterns only when
their corresponding valid key sequences are applied. In contrast to conventional logic locking, the
proposed IDKLL method uses multiple key sequences (instead of a single key sequence) as a valid
key that provides correct functionality for all inputs. Further, we propose a sub-circuit replacement
based IDKLL approach called SubLock that locks the design by replacing the original sub-circuitry
with the corresponding IDKLL based locked circuit to prevent SAT attack with low overhead. The
experimental evaluation on ISCAS benchmarks shows that the proposed SubLock mitigates the SAT
attack with high security and reduced overhead over the well-known existing methods.

Keywords Logic Locking · IP Piracy · Overbuilding · hardware Trojan · SAT-Attack · IP Protection

1 Introduction

Recent advancement in technology (i.e., artificial intelligence, Internet of Thing (IoT) and cyber-physical systems)
encourages using high-functioning, automated and intelligent electronic devices, specifically IC, for various mission-
critical applications such as financial, national defence, health care, transportation, and energy. Security is a critical
concern in all these mission-critical applications. Due to the unaffordable cost of constructing and maintaining a foundry
with advanced fabrication capabilities, semiconductor industries are becoming fabless. Further, critical time-to-market
forces companies to use third-party intellectual property (IP) blocks to design an integrated circuit (IC). Due to these
economic and timing constraints, outsourcing from third parties is unavoidable in IC development. The involvement of
several untrusted third parties and people in IC development makes the IC vulnerable to various hardware-based attacks

ar
X

iv
:2

40
6.

19
09

1v
1

 [
cs

.C
R

]
 2

7
Ju

n
20

24

arXiv Template A PREPRINT

such as IP piracy, overbuilding, reverse engineering (RE), and hardware Trojan (HT) insertion Rostami et al. [2014],
Xiao et al. [2016]. These attacks pose serious security concerns during the IC life cycle as they can compromise the
whole system’s security. For example, the insertion of hardware Trojan not only deviates IC from its normal function
but also can leak sensitive information during infield operation Bhunia et al. [2014]. Further, as a result of these supply
chain assaults, the IC industries lose billions of dollars every year Est [2015], SEMI [2008].

Logic
Synthesis

Logic
Locking

Key

Functional IC

Specifica
tions

Third
party IP

Original
Gate-level

Netlist

Re-Synthesis
Locked Netlist

Layout/Physical
Synthesis

FabricationTest and
PackagingActivation

Key

Locked
Gate-level

Netlist

End-user

IP Owner/Design House External Design House

Foundry

Trusted

UntrustedUntrusted Trusted

IP Owner/Design
House

Test Facility

Locked
IC

Layout/ GDS-II

WaferUnlocked
IC

Threats due to Untrusted Third Parties: Piracy, Overbuilding, Hardware Trojan, Reverse Engineering.

Figure 1: Logic Locking in IC development. Applying logic locking for mitigating various threats (i.e., IP Piracy,
Overbuilding, Hardware Trojan and Reverse Engineering) during the IC life cycle.

To mitigate these attacks, different design-based defence techniques such as removing rare-triggered nets Salmani et al.
[2012], Rathor et al. [2020a], HT detection Narasimhan et al. [2013], Salmani [2017], logic locking/obfuscation Roy
et al. [2010] Rajendran et al. [2015], Yasin et al. [2016a], logic camouflaging Cocchi et al. [2014], Rathor et al. [2017],
etc. are reported in the literature to mitigates these threats. In the last five years, logic locking has emerged as the most
effective and prominent method to thwart these attacks during the IC life cycle. Logic locking locks/obfuscates the
design functionality by embedding a secret key sequence during the IC development, as shown in Figure 1. The design
provides correct functionality only when a valid secret key sequence is applied. The correct key sequence is stored in
on-chip tamper-evident memory, which is inaccessible to the attacker Zhang [2016], Rajendran et al. [2012a].

The security of the logic locking techniques mainly depends on the secrecy of the key. Since the attacker always has
access to the unlocked IC from the open market, he/she reveals the correct key by applying different attack mechanisms
to the locked IC. In the last six years, boolean satisfiability (SAT) has emerged as the most effective attack that can
compromise the security of a logic locking technique within a few minutes, even using a large key size. This attack
iteratively eliminates the wrong keys by applying the distinguishing input patterns (DIPs) and identifying the correct key
Subramanyan et al. [2015], El Massad et al. [February 8-11, 2015] . To mitigate the SAT attack, several SAT resilience
logic locking techniques have been reported in the literature such as Anti-SAT block (ASB) Xie and Srivastava [2016],
Xie and Srivastava [2018], SARLock Yasin et al. [2016b], stripped functionality logic locking (SFLL) Yasin et al.
[2017a], cascaded locking (CAS-Lock) Shakya et al. [2020] and Strong Anti-SAT (SAS) Liu et al. [2020]. These
methods either vulnerable to other attacks such as removal Yasin et al. [2017b], Yasin et al. [2020], AppSAT Shamsi
et al. [2017a], Bypass Xu et al. [2017], Functional Analysis (FALL) Sirone and Subramanyan [2020], Identify flip signal
(IFS) attack Sengupta et al. [2021] or provide trade-off between security and effectiveness with large overhead. However,
recently an input dependent key-based logic locking (IDKLL) method called GateLock to prevent the SAT attacks
Rathor et al. [2024]. This method may not be vulnerable to structural analysis attacks due to using fixed structures for
IDKLL gates. This paper proposes a new lightweight IDKLL based SAT resilient method that can effectively mitigate
SAT and structural analysis attacks and provides robust IP protection. The contributions of this paper are presented in
the next section.

2 Contributions of This Paper

This section first presents the problem being addressed in this paper, the proposed solution, followed by the novelty and
significance of the proposed solution.

2

arXiv Template A PREPRINT

2.1 Problem Addressed in this Paper

The IC is vulnerable to hardware-based attacks, i.e., piracy, overbuilding, RE, HT, etc. Though several logic locking
techniques attempt to mitigate these attacks, they are vulnerable to SAT-based attacks and require significant design
overhead. Most of the existing SAT-resistant logic locking techniques are vulnerable to SAT variants such as App-SAT,
Bypass, removal, and FALL and require high implementation costs. Further, the recent methods such as CAS-Lock
and SAS also provide the trade-off between SAT and other attacks and require a large overhead. Further, to the best
of our knowledge, none of the existing SAT-resistant logic locking techniques has focused on preventing SAT attacks
instead of increasing SAT attack time or DIPs. This paper considers preventing SAT-based attacks completely with low
overhead and providing effective protection during the IC life cycle.

2.2 Solution Proposed in this Paper

This paper proposes a novel lightweight sub-circuit replacement based input dependent key-based logic locking (IDKLL)
technique to prevent SAT-based attacks. The proposed method uses multiple key sequences as the correct key to unlock
the design. The IDKLL divides the input patterns into multiple sets and uses a different key sequence as a valid key for
each set of inputs. This means a separate key sequence is used to unlock the circuit for a specific set of inputs. None of
the key sequences exists out of total key space that can achieve correct functionality for all the input patterns. Therefore,
the design functions correctly for all sets of inputs only when their respective correct key sequences are applied. Further,
in the proposed methods, design functionality is locked by replacing the original sub-circuits with their corresponding
IDKLL based locked circuits. Due to sub-circuit replacement, it is hard to apply structural analysis attacks.

2.3 Novelty and Significance of the Solution

Unlike existing techniques, the proposed IDKLL based technique utilizes multiple key sequences (instead of a single
key sequence) as a valid key to lock/unlock the design. Design can provide correct functionality for all inputs only
when their respective correct key sequence is applied. Instead of storing single key sequences in normal tamper-proof
memory, the proposed IDKLL uses the LUT-based tamper-proof memory to store and retrieve the corresponding
valid key sequences to the applied inputs. In the proposed method, the SAT attack eliminates all the key sequences
as all the key sequences are individually incorrect. Thus SAT attack failed to identify the correct key sequences.
The existing techniques suffer from a trade-off between SAT and effectiveness and other attacks and require a large
overhead. In contrast, the proposed IDKLL provides high security against SAT attacks while providing effective
protection against other attacks such as removal Yasin et al. [2020], App-SAT Shamsi et al. [2017a], and Bypass Xu
et al. [2017]. The quantitative security analysis of the proposed IDKLL shows that the attacker has to require more
than brute force attempts to decipher the correct key sequences. Further, the experimental evaluation on ISCAS and
ITC benchmarks shows that the proposed technique effectively prevents SAT-based attacks with low overhead over the
recent SAT-resistant logic locking.

The rest of the paper is organized as follows: Section 3 analyses the existing SAT-resistant logic locking techniques.
Section 4 presents a novel concept of input dependent key-based logic locking to prevent SAT attacks. Further, Section
5 presents a lightweight sub-circuit replacement based IDKLL method followed by its quantitative security analysis.
The experimental evaluation and comparative analysis of our technique are presented in Section 7. The conclusion of
the paper is provided in Section 8.

3 Related Prior Works

The researchers have proposed various logic locking techniques which either insert the additional key gates like
XOR/XNOR Roy et al. [2010], Rajendran et al. [2012a], AND/OR Dupuis et al. [2014], MUX Rajendran et al. [2015]
or replaces the existing logic with corresponding new locked logic Juretus and Savidis [2016a], LUTs Liu and Wang
[2014]. However, several attacks such as key-sensitization Rajendran et al. [2012b], Yasin et al. [2016a], logic cone
analysis Lee and Touba [2015], hill climbingPlaza and Markov [2015], SAT Subramanyan et al. [2015], El Massad et al.
[February 8-11, 2015] are reported to compromise the security above logic locking methods. Locking a design using an
interference graph-based method and inserting an additional AES module in the locked design improves the security
against these attacks Yasin et al. [2016a]. However, the interference graph-based method is topology dependent and
vulnerable to logic cone analysis attacks. Also, AES insertion causes a large design overhead Lee and Touba [2015].
A lightweight and topology independent key-gate replacement based logic locking is reported in Rathor and Sharma
[2021] to neutralize the key-sensitization and logic cone analysis attacks.

The SAT-resistant logic locking techniques such as SARLock Yasin et al. [2016b], Anti-SAT block Xie and Srivastava
[2016], and AND Tree insertion Li et al. [2016] are reported to mitigate the SAT attack with reduced overhead. The

3

arXiv Template A PREPRINT

Table 1: SUMMARY OF DIFFERENT SAT RESISTANT LOGIC LOCKING TECHNIQUES ALONG WITH THE
IDENTIFIED LIMITATIONS

Techniques Objectives Limitations
Strong logic locking
(SLL) Yasin et al.
[2016a]

Inserts non-mutable key-gates along with
AES circuit to thwart sensitization and
SAT attacks

Large overhead due to insertion of AES
circuit, vulnerable to cone-based attack

SARLock Yasin et al.
[2016b], and Anti-SAT
Xie and Srivastava
[2016], Xie and Srivas-
tava [2018]

Provide good security against SAT attack
with reduced overhead over AES

Vulnerable to Removal, App-SAT, dou-
ble DIP and Bypass attacks

Tenacious and Traceless
logic locking (TTLock)
Yasin et al. [2017c]

Provides the security against SAT and Re-
moval attacks simultaneously

Vulnerable to App-SAT, double DIP and
Bypass attacks

Stripped Functionality
logic locking (SFLL)
Yasin et al. [2017a]

Provides the security against SAT, App-
SAT, Bypass and Removal attacks simul-
taneously

Increased overhead, vulnerable to FALL
and structural attacks as mentioned in
Yang et al. [2019]

Cascaded Locking
(CAS-Lock) and Mirror
CAS (M-CAS) Shakya
et al. [2020]

Provide security against SAT, App-SAT,
Bypass, FALL, and Removal attacks si-
multaneously with low overhead

CAS/M-CAS vulnerable to IFS/MKBM-
SAT and provide a trade-off between
SAT and removal, and require large over-
head

Strong Anti-SAT (SAS)
Liu et al. [2020]

Provides the security against SAT, App-
SAT, Bypass and Removal and other at-
tacks simultaneously

Increased overhead, require additional
overhead for obfuscation otherwise may
be vulnerable to removal/IFS-SAT at-
tacks

Proposed IDKLL based
SubLock Method

Effectively mitigate SAT and its known
variants such as App-SAT, Bypass and Re-
moval simultaneously

Increased memory size due to storing
multiple valid key sequences in LUT
based temper-proof memory

AND tree insertion-based approach is vulnerable to sensitization-guided SAT attack Yasin et al. [2020]. Whereas, the
SARLock and Anti-SAT are vulnerable to removal Yasin et al. [2017b], Yasin et al. [2020], App-SAT Shamsi et al.
[2017a], double DIP Shen and Zhou [2017], and Bypass Xu et al. [2017] attacks. Moreover, the security of SARALock
and Anti-SAT block can also be compromised using SAT-based Signature Shen et al. [2019] and Bit-flipping Shen
et al. [2018] attacks. Similar to the removal attacks, these attacks also separate the SAT-resistant block from the locked
circuit. Although, the security of the Anti-SAT block against removal attack is increased Xie and Srivastava [2018] by
obfuscating it using LUT-based design withholding and wire entanglement approach Khaleghi et al. [2015]. The use of
these LUT-based approaches for obfuscation introduces a large design overhead Khaleghi et al. [2015]. A lightweight
Anti-SAT design and obfuscation technique is reported in Rathor et al. [2020b] to reduce the design overhead and
increase the security against removal attacks. This technique increases security with reduced design overhead by
constructing the Anti-SAT block using existing circuitry.

Besides the above, a tenacious and traceless logic locking called TTlock is reported in Yasin et al. [2017c] where the
SARLock is re-architected to mitigate the SAT and removal attacks simultaneously. The TTLock is an extension of
SARLock where the original netlist is modified to protect a secret input pattern such that the output of the original and
modified netlist differ only for one input pattern. Similar to SARLock and Ant-SAT, TTLock is also vulnerable to
App-SAT Shamsi et al. [2017a], double DIP Shen and Zhou [2017] and Bypass Xu et al. [2017] attacks. These attacks
mainly compromise the security of the above SAT-resistant methods due to their low output corruptibility. Though it is
reported that output corruptibility of Anti-SAT can be increased Yasin et al. [2020], Xu et al. [2017], increasing the
output computability may decrease the effectiveness of the logic locking against SAT attack Rajendran et al. [2015], Xu
et al. [2017], Yasin et al. [2020].

In order to mitigate the App-SAT, Double DIP and Bypass attacks, an extension of TTLock called stripped functionality
logic locking (SFLL) has also been proposed in Yasin et al. [2017a]. The SFLL selects multiple protected input
patterns to increase the output corruptibility and increase the security against App-SAT, Bypass and Double DIP attacks.
However, increasing the number of protected patterns increases the corruptibility; it decreases SAT iterations and
increases the required overhead Liu et al. [2020], Shakya et al. [2020]. Thus, SFLL creates the trade-off between
security and effectiveness Liu et al. [2020]. Besides, the SFLL is also proven vulnerable to Functional Analysis (FALL)
attack as reported in Sirone and Subramanyan [2020]. An attack framework has been proposed in Yang et al. [2019]
that breaks the SFLL by exploiting structural traces left in the locked design.

4

arXiv Template A PREPRINT

However, a CAS-Lock Shakya et al. [2020], and strong Anti-SAT called SAS Liu et al. [2020] based logic locking
methods are proposed to mitigate the threats of App-SAT, Bypass and simultaneously ensure the effectiveness against
SAT attack. The CAS-Lock basically adopts the merits of SARlock, and Anti-SAT uses cascaded key controlled
AND/OR gates. But it is found that CAS-Lock is vulnerable to removal attacks. Therefore, the authors Shakya et al.
[2020] have mirrored the CAS-Lock called M-CAS in the original design to mitigate the removal attacks at the increased
design overhead. Although M-CAS increase the security against removal, the design becomes vulnerable to SAT attack.
The authors in Sengupta et al. [2021] have proposed IFS/Key-bit mapping & SAT called IFS-SAT/KBM-SAT that
exploits the structural traces such as single point function and breaks the CAS and M-CAS locking. Another side,
SAS also adopts the merits of Anti-SAT and SFLL, where it introduces the error in the design for the selected set of
input minterms called critical minterms. Though SAS based locking achieves high effectiveness without compromising
security against SAT attacks over SFLL, it increases design overhead significantly. Further, it will also require additional
design overhead for obfuscating and integrating the SAS block with standard logic locking to thwart removal and other
attacks. The summary of the different related SAT-resistant logic locking techniques and their identified limitations is
presented in Table 1.

Table 2: Comparison of effectiveness of proposed and existing methods to mitigates different attacks. Here, “✓" and
“×" denote a method mitigates and does not mitigate the specified attack respectively. The “−" denotes the partial
mitigation of the attack.

Methods Attacks
SAT APP-SAT Bypass Double DIP Removal FALL SFLL-Unlocked IFS/KBM

SARLock ✓ × × × × ✓ ✓ ✓
Anti-SAT ✓ × × × × ✓ ✓ ×

TTL ✓ × × × ✓ × × ✓
SFLL ✓ ✓ ✓ ✓ ✓ × × ✓
CAS ✓ ✓ ✓ ✓ × ✓ ✓ ×

M-CAS − ✓ ✓ ✓ ✓ ✓ ✓ ×
SAS ✓ ✓ ✓ ✓ − ✓ ✓ −

Proposed (SubLock) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

It is also reported in the literature that SAS and SFLL provide low output corruptibility. Therefore, two methods
called CORruption adaptable logic locking (CORALL) Juretus and Savidis [2021] and DisORC Limaye et al. [2021]
are reported that increased the output corruptibility in comparison to SAS and SFLL techniques. In addition to SAT
attacks, these methods also increase the security against structural or netlist analysis attacks. Besides these methods, the
generalized Anti-SAT (G-Anti-SAT) Zhou and Zhang [2021] and SKG-Lock+ Nguyen et al. [2022] are also reported,
which significantly increase output corruption without compromising the security of logic locking against SAT and
other related attacks. A ChaoLock method is reported in Kamali et al. [2021] that uses asymmetric chaotic Boolean
gates and dummy inputs to increase the security against SAT attack.

However, the G-Anti-SAT is susceptible to a vulnerability assessment tool called Valkyrie Limaye et al. [2022],
SigAttack Shen et al. [2019] and generalized Patnaik et al. [2022] attacks and SKG-Lock+ and ChaoLock incur around
10% area overhead in most of the ISCAS-85 benchmarks even with low size key. In addition to these techniques, some
other SAT-resistant logic locking methods are proposed. In Shamsi et al. [2017b], the authors have added the dummy
cycles in the locked design to significantly increase the attacker’s efforts while deciphering the correct key using SAT
attack. Since cyclic logic locking failed against the CycSAT attack Zhou et al. [2017], the unreachable states are added
in Rezaei et al. [2019] to improve the security of cyclic logic locking against the CycSAT attack. Recently, an extension
of cyclic logic locking called LoopLock 2.0 Yang et al. [2022] and LoopLock 3.0 Chen et al. [2024] are proposed to
enhance the security against the CycSAT and SAT attacks simultaneously. However, LoopLock 3.0 provides better
security than LoopLock 2.0.

All the previously proposed techniques primarily focus on increasing the number of SAT iterations rather than preventing
them at the cost of significant overhead. This is because the traditional SAT attacks work in such a manner that it
requires exponential time/iterations to break them. However, the analysis of the SAT attack presented in Zhong and
Guin [2023] shows that the SAT attack can defeat any logic locking method in linear time by using a different relation
between keys using DIPs and their respective oracle responses. Hence, it is highly desirable to develop a method
that can prevent the SAT attack instead of just enhancing security against SAT attacks. However, the input-dependent
key-based logic locking (IDKLL) method called GateLock is reported in Rathor et al. [2024] that attempts to prevent
the SAT attacks. Since this method uses IDKLL-based gates, thus it may be vulnerable to structural analysis attacks.
Therefore, this paper proposes a novel sub-circuit replacement-based IDKLL method called SubLock to effectively
prevent the SAT attack and its variants with less overhead and provide robust IP protection. Due to using sub-circuit
replacement, the proposed method also provides effective security against structural analysis-based attacks compared

5

arXiv Template A PREPRINT

to GateLock. The comparison of the efficacy of proposed and existing methods for mitigating different attacks is
presented in Table 2. The next section discuss the concept of IDKLL in details and its use in logic locking followed by
the proposed SubLock method.

4 IDKLL: INPUT DEPENDENT KEY-BASED LOGIC LOCKING

In the previous logic locking techniques, the locked design provides the correct output for all the input patterns when a
valid key sequence is applied. A key sequence is considered correct or valid if it gives the correct output for all the input
patterns; otherwise, it is incorrect. Therefore, the designer stores only that valid key sequence in a tamper-proof memory
to activate or unlock the design. The SAT-based attacks eliminate the incorrect key sequences and identify the correct
key sequence by iteratively applying DIPs Yasin et al. [2016b], Rathor et al. [2020b]. Since DIP is an input pattern that
provides different outputs for two key sequences, SAT attack eliminates a key sequence that provides incorrect output.
This process repeats until all the wrong keys are eliminated. The computation time of SAT attacks mainly depends on
the number of iterations or DIPs required to eliminate the incorrect keys. Though the existing logic locking techniques
increase SAT attack computation time, they fail to prevent it completely. Therefore, this paper introduces a novel idea
of logic locking called input dependent key-based logic locking (IDKLL) that effectively prevents SAT-based attacks.

4.1 Concept of IDKLL

The proposed idea for preventing the SAT attack is to lock a design utilizing several key sequences (rather than a single
key sequence) as the valid key so that the locked design only gives correct output for all input patterns when their
respective valid key sequence is applied. In other words, each set of input patterns has a separate correct key sequence
in the locked design. As a result, the inputs determine the correct key sequence for unlocking the design. It implies that
a key sequence can only unlock the design for a single set of input patterns. A different key sequence must be used to
unlock the functionality for the second set of input patterns. Consequently, other key sequences could be used to unlock
the design functionality for the third, fourth, and other sets of inputs. Consider a circuit with n primary inputs and k
key-inputs supposed to be locked. Suppose we employ m key sequences out of a total of 2k to unlock the design. In
that case, the 2n input patterns must be separated into m sets so that the locked design gives accurate output for each
input set when its corresponding valid key sequence (KS) is applied. If we choose key sequences KS1, KS2,..., KSm

sequences as valid for input patterns sets XS1, XS2,..., XSm respectively, then the locked design produces correct
output for XS1, XS2,..., XSm only when KS1, KS2,..., KSm key sequences are applied respectively. Moreover,
there must not exist any key sequence that can unlock the design or provide correct output for all input patterns. The
correct outputs for all the input patterns can only be generated when their corresponding key sequences are applied.

4.2 Locking a Design using IDKLL

To use IDKLL to lock the circuit, we make the original circuit’s functionality dependent on key inputs such that circuit
only produces correct output for all input patterns when their respective valid key sequence is applied. For example,
consider a half-adder circuit as shown in Figure 2(a). We lock this half-adder circuit using input dependent key-based
logic locking, as shown in Figure 2(c). To lock the functionality of this circuit, we divide the input patterns into two sets,
i.e., XS1 = {“00”, “01”} and XS2 = {“10”, “11”}. The original circuit is locked by making the functionalities of its
original outputs, i.e., sum (S) and/or carry (C), dependent on two key-inputs K1 and K2 according to the truth table as
shown in Figure 2(b). Here, we use m = 2 key sequences KS1 = “01” and KS2 = “10” as a valid key for the input
sets XS1 and XS2 respectively. The locked functionality of circuit is represented with SL and CL, the correct output
would be obtained for the input sets XS1 = {“00”, “01”} and XS2 = {“10”, “11”} only when the key sequences
KS1 = “01” and KS2 = “10” will be applied respectively. It is also ensured that KS1 and KS2 only provide correct
output for the specified set of inputs and must provide complementary or incorrect output for the other set of inputs.
Otherwise, it may be possible that a single key sequence provides the correct output for all inputs. Therefore, we keep
SL as complementary of S (i.e., SL =!S) in this example for the inputs {“0110", “0111", “1000", “1001"}.

Since here we mainly lock the functionality of the sum (S) logic of the half adder circuit, we keep the CL don’t care
(x) for all the other input patterns except {“0100", “0101", “1010", “1011"}. It is observed that the overhead for
implementing IDKLL can be reduced when a design is locked by keeping the output value don’t care for the invalid
key sequences. Therefore, we also lock the circuit functionality (SL and CL) by keeping them don’t care (x) for the
remaining key-values (i.e., “00" and “11"). But due to optimization, the expression (obtained from the K-map) of SL

does not depend on all the inputs (i.e, A and B). Thus, to ensure the dependency of SL on both inputs (A and B), we
keep SL ‘1’/‘0’ instead of don’t care (x) for a few patterns, i.e., “0000" and “0010". However, a designer can also select
different patterns to do the same. If the designer is not worried about the dependency, then he/she can keep don’t care
for the remaining key values.

6

arXiv Template A PREPRINT

B
S

A

C

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

SL=K1ꚚB + (K2+A+B)
CL=ഥK2𝑩

(a) Original circuit. (b) Locking using input
dependent key.

K1 K2 A B SL CL

0 0 0 0 1 x

0 0 x 1 x x

0 0 1 0 0 x

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 x

0 1 1 1 1 x

1 0 0 0 1 x

1 0 0 1 0 x

1 0 1 0 1 0

1 0 1 1 0 1

1 1 x x x x

(c) Locked circuit obtained
from K-Map of table in (b).

K1

K2
A

B

B

SL

CL

K2

Figure 2: Locking a half adder circuit using input dependent key-based logic locking. The locked circuit provides
correct output for the input patterns {“00”, “01”} and {“10”, ‘11”} only when the two key sequences K1K2 = “01”
and “10” are applied respectively as a valid key.

In case the locked functionality already depends on all inputs while retaining, don’t care (x) for incorrect key-values.
Then, we should keep don’t cares (x) to produce an optimized locked design as illustrated in Figure 3. In this figure,
the original circuit is locked using two key inputs K1 and K2, where m = 2 key sequences, i.e., {“01", “10"} out of
four key sequences, i.e., {“00", “01", “10", “11"} are selected to provide correct output for the sets of input patterns,
i.e., {“000", “001", “010", “011"} and {“100", “101", “110", “111"} respectively. It is clear from this figure that
the Boolean expression of the locked circuit already depends on all the inputs while keeping YL don’t care for the
reaming key sequences, i.e. “00" and “11". We also lock this circuit by keeping output bits ‘0’/‘1’ for the incorrect
key sequences with different input combinations. Finally, we discovered that compared to all other locked circuits, the
circuit locked by preserving the output value don’t care for the rest of the key sequences always requires fewer number
literals. However, keeping the wrong output (!Y) instead of don’t care (x) for the remaining key sequences results in
high output corruption. As a result, one significant advantage of our method is that it allows the designer to achieve
desired output corruption, which may not be possible with existing logic locking solutions.

A B C Y
0 x x 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

A
B

C

Y
K1 K2 A B C YL

0 0 x x x x

0 1 0 x x Y

0 1 1 x x !Y

1 0 0 x x !Y

1 0 1 x x Y

1 1 x x x x

YL= K1
ഥA + K1B ഥC + K2AഥB + K2AC

K1

A

YL

ഥA

ഥB

ഥC
K2

B

C

K1

K2
A

(a) Original Circuit (b) Locked Circuit

Figure 3: An example of input dependent key-based logic locking, where the output bits are kept don’t cares (x) for all
the remaining incorrect key values, i.e. “00" and “11". The locked circuit provides correct output for the sets of input
patterns {“000", “001", “010", “011"} and {“100", “101", “110", “111"} only when “01" and “10" key sequences are
applied respectively.

4.3 Use of LUT based Tamper-Proof Memory for IDKLL

In the prior logic locking works, a single key sequence was employed as a valid key to unlock the design for all the input
patterns. As a result, the designer stores a single key sequence in the tamper-proof memory. However, the proposed

7

arXiv Template A PREPRINT

logic locking method unlocks the design by using numerous key sequences as the valid key. Therefore, our method
keeps all of these correct key sequences in a tamper-evident memory to unlock the design for all input patterns. The
different key sequences are valid for different input patterns. Therefore, we employ LUT-based tamper-proof memory
to extract the correct key sequence for the applied input pattern. Figure 4(a) and (b) presents the use of LUT based
memory for the locked circuits presented in Figure 3 and Figure 2, respectively.

Ta
m

p
e

r
P

ro
o

f
M

e
m

o
ry

K1 K2

0

1

2

3

4

5

6

7

2 bits

{K1, K2}

A
B
C Ta

m
p

er
 P

ro
o

f
M

e
m

o
ry

K1 K2

0

1 2 bits

{K1, K2}

A

(a)

(b)

(c)

K1 K2

Ta
m

p
e

r
P

ro
o

f
M

e
m

o
ry

0

1

2

3
2 bits

{K1, K2}

A
B

Figure 4: The structure of LUT based memory for extracting the correct key sequence for the locked circuit shown as in
(a) Figure 3 (b) Figure 2 (c) Optimized structure of LUT based memory.

It is clear from Figure 4(a) that for the set of input patterns {“000", “001", “010", “011"} the correct key sequence,
i.e., “01" can be easily fetched from the tamper-proof memory by applying any of these patterns at the selection line of
the multiplexer. In the same manner, Figure 4(b) shows the extraction of the right key sequence for the applied input.
However, it can be realized from Figure 4(a) and 4(b) that the key sequences, i.e. “01" and “10", are repeated numerous
times in memory, which results in increased design cost. Therefore, to save the required memory, we should store
unique, valid key sequences as shown in Figure 4(c). Moreover, in Figure 4(a) and4(b), the value of the correct key for
different patterns only changes (from “01" to “10") with input A and it is independent of the other inputs, i.e. B, C.
Therefore, we remove these two inputs for optimized implementation of LUT based tamper-proof memory to store
correct key sequences “01" and “10" as shown in Figure 4(c).

However, one thing can also be observed from the above that using LUT based tamper-proof memory requires more
overhead compared to the conventional normal tamper-proof memory. This is because the LUT based memory stores
multiple key sequences valid for different input sets. Whereas the conventional normal memory stores only a single key
sequence that is valid for all input patterns. Further, LUT based memory uses an additional multiplexer unit to fetch the
respective valid key for different sets of inputs. Due to these reasons, the LUT based tamper-proof memory requires
more overhead than the conventional normal tamper-proof memory. However, analysis of this is out of scope in this
paper. This paper uses LUT based memory as one solution to store multiple key sequences and fetch respective valid
key sequences on applying an input. One can also explore any other cost-effective solution to achieve the same. The
next section presents the generalized structure of IDKLL and its integration with LUT based memory.

4.4 Complete Generalized Structure of IDKLL after Integrating LUT based Memory

The truth tables of the above-locked circuit, as shown in Figure 2(b) and Figure 3(b), exhibit don’t care values for some
outputs. However, the boolean expression or circuit obtained after solving the K-Map will always produce deterministic
outputs. Therefore, we also present the truth table in Figure 5(a), which exhibits deterministic output for every input of
the locked circuit/expression as shown in Figure 2(c). We observed from this table that the locked circuit also provides
correct output for the inputs “11" and “10" on applying key sequences“00" and “11" respectively. Though these key
sequences cannot produce the correct output for all patterns, they may be used in combination with other valid key
sequences to achieve the correct output. For example, utilizing “00" and “11" key sequences (instead of “10") along
with “01" (i.e., key set {“00", “01", “11"}) can also achieve correct output for all patterns i..e, “11", “10" and {“00",
“01"} respectively. Hence, it cannot be ensured that only a single valid key set exists that provide correct output for a

8

arXiv Template A PREPRINT

locked circuit. However, one can easily ensure that only a single valid set can lock/unlock the design at the cost of
increased overhead. To do this, we can specify the complementary (i.e., wrong output) output instead of don’t care (x)
for all the remaining/unused key sequences (which are not part of valid key sequences). In this case, only valid key
sequences will only provide correct output for the input patterns, and all the unused/remaining (invalid) key sequences
will guaranteed provide incorrect output for the input patterns. However, the locked design requires a large overhead if
we mention complementary/wrong output for all unused key sequences. Therefore, the proposed method use don’t care
(x) for the remaining key sequences to obtain the optimized design and ensure that no single key sequence exists that
provides correct output for all input patterns by manually verifying the truth table of synthesized locked sub-circuits.

Since none of the single key sequences generates the correct output, the attacker cannot apply SAT attack, or SAT
attack will either return a single key that will not make it successful. In addition to the above, we cannot ensure in
the proposed method that a returned key sequence does not belong to the valid key set because SAT attack always
eliminates wrong key sequences and retain the key sequence, which provides the correct output for at least one pattern.
However, if a key sequence provides correct output for a few patterns, then still SAT attack cannot be applied/worked
on the proposed method even if returned key sequences provide correct output for a few patterns or belong to a valid
key set. This is because, in our method, all key sequences are incorrect individually; SAT attack eliminates all key
sequences and returns a single key sequence. Though in our method, the returned key sequence may belong to a set of
correct key sequences or a set of incorrect/unused key sequences, it can never provide correct output for all patterns,
which will make SAT unsuccessful. Therefore, in our method, we do not consider that the key returned by SAT attack
must not belong to the valid key set.

Finally, we combine the locked design with the LUT based tamper-proof memory to obtain the correct output. The
integration of the locked circuit(shown in Figure 2(c)) with its LUT based tamper-proof memory is given in Figure 5. It
is clear from this that correct output can be easily obtained for all patterns, as shown in Truth Table.

K1 K2 A B SL CL

0 0 0 X !S !C

0 0 1 0 !S C

0 0 1 1 S C

0 1 0 X S C

0 1 1 0 !S C

0 1 1 1 !S !C

1 0 0 0 !S C

1 0 0 1 !S !C

1 0 1 X S C

1 1 0 X !S C

1 1 1 0 S C

1 1 1 1 S !C

K1 K2

Ta
m

p
e

r
P

ro
o

f
M

e
m

o
ry

0

1

2

3

A

B

K1

A

B

B

SL

CL

K2

K1 K2 A B SL CL

0 1 0 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

1 0 1 1 0 1

Truth Table

(a) Deterministic Functionality
of Locked circuit.

(b) Integrating LUT based temper proof
memory with the locked circuit.

Figure 5: Example for integrating LUT based tamper-proof memory with the locked circuit to achieve correct
functionality.

Furthermore, Figure 6 shows the generalized structure of LUT based tamper-proof memory and its integration for
generating the input dependent key (or storing valid key sequences) for unlocking the design locked using the proposed
IDKLL. Only the key sequences that produce correct output are considered valid and stored in this memory. In the
proposed IDKLL, all the key sequences are individually invalid, and no key sequence exists that can provide the correct
output for all the inputs. Therefore, the attacker will fail to determine the valid key sequences by applying DIPs in
SAT-based attacks. This is because the application of a DIP produces different outputs for two valid key sequences. The
SAT solver eliminates one correct key sequence, which provides incorrect output for that DIP. Similarly, the second
DIP will eliminate the second key sequence. Finally, the SAT solver either eliminates all the key sequences or returns a
single valid/invalid key sequence. The returned key sequence would be insufficient to obtain the correct output for all
the inputs because the locked circuit cannot produce the correct output for all the inputs until all their respective correct
key sequences are applied.

The implementation of the proposed IDKLL and LUT-based tamper-proof memory for storing the valid key sequences
for the small circuit is explained above. The concept of LUT based tamper-proof memory can also be easily represented
at the block level, as shown in Figure 7.

9

arXiv Template A PREPRINT

Ta
m

p
e

r-
P

ro
o

f
M

e
m

o
ry

K1, K2…Kk

.

.

.

KS1

KS2

KS3

KSm

0

1

2

.

.

.

.

.

.

m-1

{K1, K2…Kk}

k bits

x1

x2

xn

IDKLL-
Based
Locked
Circuit

Primary
Inputs (PIs)

Primary
Outputs

(POs)

Selected
n InputsLUT Based Tamper-

Proof Memory

Figure 6: Generalized structure and integration of LUT based tamper-proof memory with the design locked using
IDKLL.

LUT Based Tamper
Proof Memory

Locked CircuitPrimary
Inputs

Primary
Outputs

X
K

Figure 7: Block level implementation of proposed input dependent key-based logic locking approach.

However, locking a small circuit using the proposed IDKLL is explained above. Locking a large design that exhibits
many inputs/outputs using the above procedure (where we also make the output dependent on the key inputs) would be
very complex and challenging. Further, it may also require significant overhead, which may be unaffordable sometimes.
Therefore, we also propose a low-cost approach for locking a design using input dependent key-based logic locking in
the next section.

5 SUB-Lock: Sub-Circuit Replacement based IDKLL

The locking design by considering the whole functionality (discussed in Section 4) is very challenging and may require
unaffordable design overhead. However, we can insert an additional locked circuit similar to Anti-SAT to lock the
design functionality. The additional insertion may also incur a large overhead. Therefore, we propose an approach that
locks the design by replacing the original sub-circuitry of the design with the corresponding new circuit that is locked
using input dependent key-based logic locking. In the proposed approach, we select several sub-circuits in a design and
then the selected circuits are replaced with their corresponding locked circuits, which are locked using proposed logic
locking as discussed in Section 4.

The example of locking a design by replacing its sub-circuit is shown in Figure 8. Here, an example circuit, as shown
in Figure 8(a), is considered for locking by replacing its sub-circuit (Y = cd + de) with the corresponding circuit,
which is locked using input dependent key-based logic locking. To achieve this, we first construct the lock version of
the selected sub-circuit as shown in Figure 8(b) using proposed input dependent key-based logic locking. Finally, the
original circuit is locked by replacing the selected sub-circuit (Y = cd+ de) with its locked version as shown in Figure
8(c)). This figure presents the complete locked design, where the locked version of the originally selected sub-circuit is
mentioned with the dotted box. In this locked circuit, if we analyzed the overhead in terms of gate count, then only
three additional gates are required due to replacing the existing sub-circuitry. Hence, locking a design by replacing
multiple sub-circuits with their corresponding locked circuits can significantly reduce the design overhead compared to
the insertion-based logic locking technique, i.e., Anti-SAT Xie and Srivastava [2018].

The selection of sub-circuits for locking the design can be random or judicious. Though random selection can introduce
some non-determinism while locking the design, it may fail to provide high output corruption. On the other hand, a
judicious replacement can provide high output corruption. For example, selecting the sub-circuits whose output exhibits
the highest fault impact point Rajendran et al. [2015] for replacement can significantly increase output corruption. The

10

arXiv Template A PREPRINT

c
d

e

G1

G2

G3
Y

(a) Original Circuit

(b) A sub-circuit of original circuit

(c) Complete locked circuit after replacing a sub-circuit with its IDKLL based

locked circuit. Correct key sequences are: K1K2 ={ “01” and “10”} for input

patterns, cde = {000, 001, 010, 011} and {100, 101, 110, 111} respectively.

a

b

f

c
d

e

G1

G2

G3
Y

G4

G5

G6

G7

a

b

f

c

K1

Y

e

K1

d

K2

c
e

K2

G4

G6

G5

G7

L1

L2

L3

L4

L5

L6

L7

L8

Figure 8: The example of locking a design by replacing a small sub circuit with their corresponding IDKLL based
locked circuit.

designer can combine both the above approaches to achieve high security. It can also be observed in proposed logic
locking that no additional special structure or key-gates (i.e., XOR/XNOR, MUX etc.) are inserted Juretus and Savidis
[2016b], Rajendran et al. [2015]. Hence, it would be very difficult to identify the replaced/locked circuitry in the design
exactly. Moreover, the designer can also lock the design by inserting the additional locked circuits and by replacing
the existing sub-circuits with their locked circuits, as reported in Rathor et al. [2020b]. In this case, it is very difficult
for the attacker to distinguish which part of the circuit is additionally inserted or which part is an existing part. The
quantitative security analysis of the proposed logic locking is given in the next section.

6 Security Analysis of Proposed Technique

It is clear from the above that the proposed input dependent key-based logic locking technique completely prevents
SAT-based attacks. The attacker cannot apply the SAT-based attack to decipher the correct key from the circuit locked
using the proposed input dependent key-based logic locking. Hence, the attacker has to employ only a brute force
attack to extract the key. Therefore, in this subsection, we also quantitatively analyze and compare the security of the
proposed technique against the brute force attack. Let us consider the above discussion as shown in Section 4, where a
circuit with n primary inputs is locked by inserting k key-inputs. If this design is locked using standard logic locking
techniques, the attacker has to apply all key sequences or brute force attempts to unlock the design Rajendran et al.
[2015], Yasin et al. [2016a] Karmakar et al. [2017]. If the total key sequences or brute force attempts for k bit-length
key are denoted with l, then l can be represented as

l = 2k (1)

Although, the SAT-based attacks can break these standard logic locking techniques within a few attempts Subramanyan
et al. [2015]. The use of SAT-resistant logic locking techniques such as Anti-SAT Xie and Srivastava [2016], Xie and
Srivastava [2018] forces the attacker to apply at least λ attempts/iterations to extract the correct key sequence. Here, the
value of λ for k bits key is represented with Eq. (2) Xiao et al. [2016].

λ = 2k/2 (2)

On the other hand, if we use m key key-sequences out of l to lock the entire design functionality using the proposed
technique, then to know the correct key sequences and their order, the attacker has first to know the output corresponding
to each key sequence. Next, he/she has to identify correct combinations of key sequences as well as their order of
application as a secret key, such that it provides correct output for all input patterns. The number of attempts required
to know the output of each key sequence would be equivalent to the brute force attempts, i.e, l = 2k as shown in Eq.
1. Though we utilize m key sequences as a correct key out of l, the attacker would not be aware of how many key
sequences, which combination, and which order (i.e. which key sequence is used for which input pattern) they have

11

arXiv Template A PREPRINT

used to lock design. Therefore, the attacker has to apply all possible permuted combinations of l key sequences to
determine a correct combination and order of application of key sequences. If the total permuted combinations for l key
sequences are denoted with PC, then PC can be represented as follows.

PC = lC1.l! +
lC2.2! +

lC3.3! ++ lCl.l! (3)

The above equation can also be represented in the form of permutation as follows

PC = lP 1 +
lP 2 +

lP 3 ++ lP l (4)

Since,
lP r =

l!

(l − r)!

Thus, we can also write the Eq. 4 as follows.

PC =
l!

(l − 1)!
+

l!

(l − 2)!
+

l!

(l − 3)!
++

l!

(l − l)!
(5)

PC = l!

(
1

(0)!
+

1

(1)!
+

1

(2)!
++

1

(l − 1)!

)
(6)

PC = l!

l−1∑
r=1

1

(r)!
(7)

However, the above equation can also be represented in other forms; this is out of scope in this paper. Thus, we compute
the total attempts required by the attacker to decipher the correct key sequences by adding the attempts of finding the
output, i.e., l (Eq. (1)) with the total permuted combinations (Eq. (7)) of key sequences as follows.

Total_Attempts = l + PC (8)

Finally, the total number of brute force attempts required by the attacker to extract correct key sequences in the proposed
technique can be computed by placing the value of l and PC from Eq. (1) and Eq. (7) into the Eq. (7) as follows

Total_Attempts = 2k + (2k)!

2k−1∑
r=1

1

(r)!
(9)

Now, it can be observed from Eq. (1) and Eq. (2) that existing logic locking techniques are only able to maintain 2k

brute force attempts without preventing SAT attack. They can provide security against SAT attacks while maintaining
only 2k/2 attempts/iterations. On the other hand, the proposed technique significantly increases the number of brute
force attempts for the attacker to decipher the correct key over the existing techniques while preventing SAT attack, as
shown in Eq. (9). This equation basically presents the attack complexity for the entire locked circuit. The attacker may
also attempt to identify the locked sub-circuits/sub-cones and break them individually. However, it will require knowing
the original functionality of the replaced sub-circuit. But due to replacement, it will be approximately impossible
for the attacker to know the original functionality of the replaced sub-circuit. Further, due to the use of multiple key
sequences as valid for each sub-circuit, the attacker cannot apply SAT attack even on individual sub-circuits. Therefore,
the attacker must apply brute force similar to Eq. (9), which will require exponential complexity.

Due to the replacement, if the attacker also tries to break the multiple sub-circuits simultaneously, he/she also cannot
solve them simultaneously. Further, the output of one locked sub-circuit may also interfere with the output of another
locked sub-circuit. Due to this and using multiple key sequences as the valid key, the attacker cannot even apply
sensitization and any other attack to break the proposed IDKLL method. Hence, an attacker will always require
exponential complexity (or brute force) to break the proposed method in every case. In the proposed method, the
number of increased brute force can be computed by subtracting the Eq. (1) from Eq. (9) as shown below.

Increased_Attempts = (2k)!

2k−1∑
r=1

1

(r)!
(10)

12

arXiv Template A PREPRINT

It is clear from the above equation that the proposed input dependent key-based logic locking technique prevents
SAT-based attacks and significantly increases the required number of brute force attempts over all the existing techniques.
We also justify this claim with the experimental evaluation of the proposed technique, as presented in the next section.

7 Experimental Results and Analysis

This section first presents the experimental setup, followed by simulation results and comparative analysis.

7.1 Experimental Setup

We locked the ISCAS/ITC benchmark circuits by randomly replacing the 3-input and 4-input sub-circuities with their
corresponding locked circuits which are locked using the proposed IDKLL method as discussed in Section 5. To analyze
the effectiveness of the proposed technique, the varying number of keys (i.e., 16, 32, 64, 128) are embedded in the
benchmarks, and different locked circuits are generated, namely Prop_16K, Prop_32K, Prop_64K and Prop_128K.
The security of the proposed technique against SAT-based attacks is evaluated using the SAT attack tool as reported in
Subramanyan et al. [2015]. Finally, to analyze the implementation overhead, the locked circuits are synthesized using
Cadence RTL compiler with Nangate Open Cell Library 45nm nag [2011], and different design metrics (area, power,
delay) are extracted. We compared our approach with the existing methods.

7.2 SAT Attack Results and Analysis

To validate the effectiveness of the proposed method against SAT attacks, the locked versions of the selected sub-circuits
are also individually verified for functionality and security against SAT attacks. Afterwards, we locked the benchmark
circuits by randomly replacing their sub-circuits with the corresponding IDKLL based locked versions. We have
embedded the different number of keys (16, 32, 64, 128) in each benchmark while locking them. Finally, we evaluate
the effectiveness of the proposed sub-circuit replacement based IDKLL method against SAT attack by applying SAT
attack on the above-locked benchmarks using SAT solver tool Subramanyan et al. [2015]. As a result of the SAT solver,
we found that the SAT attack cannot extract the correct key from the individual locked sub-circuits as well as from the
locked benchmarks circuits. It either provides the “UNSAT Model" or returns a key that has been proven wrong on its
verification. The screen-shots of the demonstration of SAT attack on the c7552 and c1908 benchmark circuits locked by
inserting 16 keys are shown in Figure 9.

(a) SAT attack results on c7552 locked circuit with 16-bit key

(b) SAT attack results on c1908 locked circuit with 16-bit key

(c) Validation of key resturned by SAT attack for c1908 locked circuit

Figure 9: Sample snapshots of the demonstration of SAT attack on the benchmarks locked using proposed sub-circuit
replacement based IDKLL.

13

arXiv Template A PREPRINT

SAT attack completely failed to identify the correct key even with applying the Partial-Break algorithm along with fault
analysis Rajendran et al. [2015]. It can be observed from this figure that the application of SAT attack on the c7552
locked benchmark provides the “UNSAT Model", which means it is unable to determine the correct key as shown in
Figure 9(a). Although SAT attack returns a key for the c1908 locked benchmark (Figure 9(b)), the returned key is
declared wrong or incorrect after verification using SAT solver program as shown in Figure 9(c). Apart from c7552 and
c1908, we have also applied the SAT attack on other locked ISCAS and ITC benchmark circuits. We observed that SAT
attack has completely failed to identify the correct key in any locked benchmark circuit that is locked using the proposed
IDKLL. The SAT attacks simulation results for ISCAS benchmarks locked with 16 and 32 keys are shown in Table 3.

Table 3: Analysis of Proposed Technique using SAT Attack Tool

Circuits Prop_16K Prop_32K
#Itr. Time(Sec.) Status #Itr. Time(Sec.) Status

c499 14 0.621622 UNSAT 27 1.12494 UNSAT
c880 5 0.175454 Wrong Key 6 0.2497 UNSAT
c1355 8 0.439975 UNSAT 14 1.70843 UNSAT
c1908 3 0.312497 Wrong Key 2 0.273019 UNSAT
c2670 9 0.487856 UNSAT 16 0.753063 Wrong Key
c3540 8 0.709153 UNSAT 3 0.583499 UNSAT
c5315 7 0.935628 UNSAT 7 0.975759 UNSAT
c7552 3 1.20122 UNSAT 2 1.13674 UNSAT

While performing the SAT attack, we have extracted three evaluation metrics, i.e., the number of SAT iterations, SAT
attack time (in seconds) and status (whether the correct key was found or not), to validate the proposed IDKLL. It
can be observed from this table that SAT attack fails to determine any key (i.e., “UNSAT Model") or provides an
“wrong key" for the implementations of the proposed method. On the other hand, SAT attack identifies the correct
key for all the benchmark circuits locked using exiting Anti-SAT, CAS-Lock and other SAT resistant methods in an
average 2k iterations with 2k keys (here k= 8, 16). However, the SAT attack time and the number of SAT iterations
are significantly low in the proposed sub-circuit replacement based IDKLL. This is because the execution of SAT
attack fails or terminates unsuccessfully. Therefore, the attacker has to employ brute force only in our method. The
comparison of SAT/brute-force iterations/attempts required by the proposed SubLock and existing methods are shown
in Table 4. Here m is the number of critical inputs. The SAT attack does not fail in the existing SAT-resistant methods;
it runs until the worst-case time and returns the correct key afterwards.

Table 4: Comparison of SAT/brute-force iterations/attempts (k=2*n keys) achieved by different SAT resistant methods
Methods SARLock Anti-SAT TTLock CAS-Lock Strong Anti-SAT Proposed SubLock

#Iterations 2k 2n 2k 2n 2n+m
2

2k + (2k)!
∑2k−1

r=1
1

(r)!

In the proposed method, SAT attack would never identify the correct key in the proposed IDKLL method, even locking
with any number of keys. Therefore, the proposed IDKLL method completely prevents the SAT attack. This is basically
happening because the proposed technique uses multiple key sequences as a correct key; thus, SAT attack either
eliminates all the keys or leaves with a single key sequence that can never be correct for all the input patterns. On
the other hand, the existing SAT-resistant methods approach uses a single key sequence as a correct key for all input
patterns. Hence, the existing SAT resistance logic locking techniques failed to prevent the SAT attack. Further, we also
analyze the effectiveness of the proposed method against variants of SAT attacks such as App-SAT, removal, IFS and
others. Since the proposed method is not based on a single-point function and can provide desired output corruption,
applying these attacks is approximately impossible on our method. The proposed sub-circuit replacement based IDKLL
method will be very effective in mitigating all the known attacks. The overhead analysis of SubLock is presented in the
next subsection.

7.3 Overhead Results and Analysis

To analyze the implementation overhead of our technique, we have implemented the proposed method by embedding
the varying number of keys in ISCAS and ITC benchmarks. The original, as well as locked benchmarks, are synthesized
using the Cadence RTL compiler and different design metrics such as area, power and delay are extracted. It has been
analyzed during synthesis that the proposed sub-circuit replacement based IDKLL (SubLock) requires a significantly
large overhead for small benchmarks (ISCAS-85), even with a small key size. The average percentage overhead for
the area, power and delay required by the proposed SubLock method for 16 (Prop_32K) and 32 (Prop_32K) keys are

14

arXiv Template A PREPRINT

Table 5: Design Metrics of Proposed Sub-circuit replacement based IDKLL method for varying key-size
Circuit Area (µm2) Power (nW) Delay (ps)

Prop_32K Prop_64K Prop_128K Prop_32K Prop_64K Prop_128K Prop_32K Prop_64K Prop_128K
s35932 12371 12428 12673 842968 848411 884143 3102 3131 2430
s38417 11826 11825 11931 664726 695979 670394 5855 5828 5750
s38584 9936 9957 10181 628548 633068 653932 4152 4230 4227

b14 3430 3574 3610 272687 316452 312861 17891 21107 21448
b15 6574 6699 6744 333576 345179 360123 21749 21872 22130
b17 20762 20826 20880 1025126 1036394 1041532 21228 20649 21516
b18 51947 51994 52044 3031686 3060482 3052163 15119 14654 15357
b20 7297 7318 7353 498601 542410 513114 23616 24430 24634
b21 7547 7563 7593 495198 496952 531195 22884 24238 24256
b22 10909 10909 10969 732907 748867 823871 23190 23444 23455

Average 14260 14309 14398 852602 872419 884333 15879 16358 16520

presented in Figure 10. Here, it can be seen that the proposed SubLock require 16%, 9.3% and 5%, area, power and
delay overhead for embedding 32 keys.

Figure 10: Average percentage overhead required by proposed method for embedding 16 and 32 keys in the small
benchmarks (ISCAS-85).

However, we have also evaluated the proposed SubLock method on large benchmarks with large key sizes. This
evaluation proved that our SubLock method could effectively thwart SAT-based attacks with low overhead. The area,
power and delay required for locking large ISCAS-89 and ITC benchmark circuits using the proposed method while
embedding 32, 64, and 128 keys are shown in Table 5. It can be easily observed from this table that the design metrics
(area, power, delay) are not significantly increasing while changing the key size from 32 to 128. It means that the
proposed SubLock method will not require high area, power, and delay while locking a design even with more large
size key, i.e., K=256 or K=512.

In addition, we have also implemented the existing SAT resistant methods ASB Xie and Srivastava [2016], CAS Shakya
et al. [2020], and SAS Liu et al. [2020] by randomly inserting different key size blocks (K=32, K=64 and K=128)
in ISACS-89 and ITC benchmarks. The same locked benchmarks are synthesized using the Cadence RTL compiler,
and different design metrics, i.e., area, power and delay, are extracted. The comparison of comparative analysis of the
proposed method is presented next subsection.

7.4 Comparative Analysis

To concisely compare the area, power and delay, we calculated the average of each design metric for the proposed and
existing ASB Xie and Srivastava [2016], CAS Shakya et al. [2020], and SAS Liu et al. [2020] methods. The comparison
of average area, power and delay required by proposed and existing methods on large ISCAS-89 and ITC benchmarks
is shown in Table 6.

It can be observed from this table that the ASB requires slightly less overhead compared to CAS and SAS blocks.
However, the SAS block requires a large overhead in comparison to ASB and CAS blocks; it provides high security
against SAT over ASB and CAS blocks. On the other hand, the proposed SubLock method required low area, power and
delay over all these SAT-resistant methods. Furthermore, we also compute the average percentage overhead required

15

arXiv Template A PREPRINT

Table 6: Comparison of Average Design Metrics Required by Existing and Proposed Techniques

Circuit Area (µm2) Power (nW) Delay (ps)
K=32 K=64 K=128 K=32 K=64 K=128 K=32 K=64 K=128

Original 14254 14254 14254 879823 879823 879823 15918 15918 15918
ASB 14339 14477 14633 866187 887057 906152 16550 17005 18098
CAS 14350 14475 14698 872427 891093 916603 17268 18617 20898
SAS 14396 14514 14755 866754 882127 912844 17360 18894 20379

SubLock 14260 14309 14398 852602 872419 884333 15879 16358 16520

by proposed and existing methods, as shown in Figure 11. It can be analysed from this figure that the ASB, CAS and
SAS methods require low overhead for area and power, whereas they require a large overhead for the delay, specifically
for K=128, i.e., more than 25%. This is because we randomly inserted the ASB, CAS and SAS blocks in the design,
causing the insertion of these blocks in critical paths. However, the delay overhead can be reduced for these methods by
judicious insertion or by avoiding insertion in critical paths. On the other hand, the proposed SubLock method requires
low delay overhead (i.e., 3.8%) because we replace the small sub-circuits (3-input/4-input) with the corresponding
IDKLL based locked circuit.

Figure 11: Comparison of average overhead (%) required by proposed and existing methods for embedding K=16,
K=32 and K=128 keys in the large ISCAS-89 and ITC benchmarks.

In addition, it can also be easily analysed that area and power overhead for all the methods are less than the 5% even
for 128-bit key size. Though the SAS block insertion-based method provides high security, it requires a large area
and power overhead compared to ASB and CAS insertion-based methods. For the 128-bit key, the SAS-based method
requires 3.5% and 3.8% area and power overhead, and the ASB method requires 2.7% and 3% area and power overhead
receptively. All these existing methods are implemented without any obfuscation; they may be vulnerable to Removal
attacks Yasin et al. [2020]. The implementation of these methods with obfuscation will require significantly high
overhead. On the other hand, the proposed SubLock method requires significantly less area and power overhead
compared to ASB, CAS and SAS block insertion-based methods for all the key sizes. For the 128-bit key, the proposed
method requires 1% and 0.5% area and power overhead, whereas, for the 64-bit key, it requires only 0.4% and -0.8%
area and power overhead, respectively.

It can also be observed from Figure 11 and Table 6 that the proposed method requires less power and delay (negative
value in the figure for K=32 and K=64) in comparison to the original circuit. However, it is majorly happening for
K=32, where both power and delay overhead are negative in the proposed method. This is happening because 1) we
intentionally designed and optimized the locked sub-circuits to reduce the overhead of the proposed logic locking
method, 2) the replacement of sub-circuits with corresponding IDKLL based optimized locked sub-circuits changes the
original logic of the replaced sub-circuits; afterwards, the synthesizer optimizes the entire locked circuits to reduces
power, area and delay. These optimizations slightly reduce the overhead of a locked circuit over the original circuit.
Due to the low number of replacements, this slight reduction is clearly visualized while embedding a small number of
keys (i.e., K=32 or K=64) in large benchmarks. Due to many replacements, it is not visualizing in the case of K=128.
Hence, in practical key size (K=128, K=256 and K=512), the power and delay overhead in the proposed method will
always be high compared to the original circuit.

16

arXiv Template A PREPRINT

Besides the above, we have also compared our approach with the TTLock Yasin et al. [2017c]. The comparison of the
average percentage overhead required by proposed and TTLock methods on large ISACS-89 benchmarks for the key
size of 32 and 64 is shown in Figure 12. It can be observed here that the delay overhead in TLock is approximately near
to our approach. But TTLock requires significantly high area and power overhead compared to the proposed approach.
We have also analyzed the implementation overhead of the SFLL Yasin et al. [2017a] method. It is found that the
proposed method also requires significantly less overhead compared to SFLL. The SFLL is the extension of TTLock,
which provides high security over TTLock but requires more overhead over the TTLock. Since the proposed SubLock
method requires less overhead over TTLock even for the same key size, thus the proposed method will also require low
overhead over the SFLL method for the same key size. In addition to these methods, other recently reported methods
such as CORALL Juretus and Savidis [2021], DisORC Limaye et al. [2021], G-Anti-SAT Zhou and Zhang [2021] and
SKG-Lock+ Nguyen et al. [2022] are also required around 10% overhead while only increasing the security against
SAT attack not preventing it.

Figure 12: Comparison of average percentage overhead of proposed SubLock and TTLock methods on ISCAS-89
benchmarks for 32 and 64 keys.

In the above analysis, we compared and analyzed that the implementation of the proposed SubLock method for the
same key size requires low implementation overhead compared to existing SAT-resistant methods. On the other hand,
it can be observed from Eq. (9) that the proposed method achieves minimum 2k more attack iterations for the same
key size over the existing ASB, CAS, and SAS methods. It means the proposed method can achieve the same security
with the 64-bit key, which is achieved by existing methods with a 128-bit key. In this case, the required overhead of
the proposed method will be further reduced while comparing the proposed SubLock and existing methods for the
same security. For the 64-bit key, the proposed SubLock method can provide the same or higher security with 0.4%,
-0.8% and 2.76% area, power, and delay overhead. In contrast, the existing SAS/CAS method requires around 3.5%/3%,
3.8%/4.2% and 28%/31% area, power and delay overhead, respectively for achieving the same security. Here, it is
clear that the proposed method requires significantly less overhead than all the existing methods for the same security.
Overall, it can be easily said that the proposed SubLock method outperforms all the well-known SAT-resistant methods
in terms of security and design overhead.

8 Conclusion

This paper proposes a new SAT-resistant logic locking method based on the idea of input dependent key-based logic
locking called IDKLL. The existing SAT-resistant logic locking techniques utilize a single key sequence as a correct key
to unlock the design, whereas the proposed IDKLL approach uses multiple key sequences as correct to unlock the design
functionality for all inputs. The use of multiple key sequences as the correct key neutralizes the SAT attack completely.
In order to lock the whole design functionality using IDKLL, we propose a lightweight sub-circuit replacement based
IDKLL method called SubLock that provides effective security against SAT based attacks with low overhead. The
proposed SubLock approach replaces the original small sub-circuitries with their corresponding IDKLL based locked
circuits. Further, we present the security analysis of the proposed method, which shows that our method tremendously
increases the security or brute force attempts over all the existing SAT-resistant methods and effectively prevents SAT
based attacks. The experimental evaluation of the proposed SubLock on ISCAS and ITC benchmarks shows that the
proposed method effectively prevents the SAT attack while requiring very low overhead compared to the well-known
method such as Anti-SAT, CAS-Lock and Strong Anti-SAT.

17

arXiv Template A PREPRINT

The concept of IDKLL is based on using multiple correct key sequences to unlock the design for all inputs. This paper
uses LUT based tamper-proof memory to store multiple valid key sequences and retrieve the correct key sequence
corresponding to a given input set. Implementing LUT based tamper-proof memory for storing multiple key sequences
may require high implementation costs over implementing normal taper-proof memory for storing a single key sequence.
Therefore, our future work will focus on identifying the cost-effective implementation/way to store multiple correct key
sequences.

References
Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on hardware security: Models, methods, and

metrics. Proceedings of the IEEE, 102(8):1283–1295, 2014.

K Xiao, D Forte, Y Jin, R Karri, S Bhunia, and M Tehranipoor. Hardware trojans: Lessons learned after one decade of
research. ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(1):6:1–6:23, 2016.

Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan. Hardware trojan attacks: threat analysis
and countermeasures. Proceedings of the IEEE, 102(8):1229–1247, 2014.

International chamber of commerce, impacts of counterfeiting and piracy to reach us $1.7 trillion by 2015. [Online].
Available: http://www.iccwbo.org/News/Articles/2011/Impacts-ofcounterfeiting-and-piracy-to-reach-US$1-7-trillion-
by-2015/, 2015.

SEMI. Innovation is at risk as semiconductor equipment and materials industry loses up to $4 billion annually due to IP
infringement. [Online]. Available: www.semi.org/en/Press/P043775, 2008.

Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. A novel technique for improving hardware trojan
detection and reducing trojan activation time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20
(1):112–125, 2012.

Vijaypal Singh Rathor, Bharat Garg, and G. K. Sharma. A novel low complexity logic encryption tech-
nique for design-for-trust. IEEE Transactions on Emerging Topics in Computing, 8(3):688–699, 2020a.
doi:10.1109/TETC.2018.2795706.

Seetharam Narasimhan, Dongdong Du, Rajat Subhra Chakraborty, Somnath Paul, Francis G Wolff, Christos A
Papachristou, Kaushik Roy, and Swarup Bhunia. Hardware trojan detection by multiple-parameter side-channel
analysis. IEEE Transactions on computers, 62(11):2183–2195, 2013.

Hassan Salmani. Cotd: Reference-free hardware trojan detection and recovery based on controllability and observability
in gate-level netlist. IEEE Transactions on Information Forensics and Security, 12(2):338–350, 2017.

Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Ending piracy of integrated circuits. Computer, 43(10):0030–38,
2010.

Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Fault analysis-based logic encryption. IEEE Transactions on Computers, 64(2):410–424, 2015.

Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. On improving the security of logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(9):1411–1424, 2016a.

Ronald P Cocchi, James P Baukus, Lap Wai Chow, and Bryan J Wang. Circuit camouflage integration for hardware ip
protection. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–5. IEEE, 2014.

Vijaypal Singh Rathor, Bharat Garg, and G. K. Sharma. New light weight threshold voltage defined camouflaged gates
for trustworthy designs. Journal of Electronic Testing: Theory and Application, 33(5):657–668, Oct 2017.

Jiliang Zhang. A practical logic obfuscation technique for hardware security. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 24(3):1193–1197, 2016.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Logic encryption: A fault analysis
perspective. In Proceedings of the Conference on Design, Automation and Test in Europe, pages 953–958. EDA
Consortium, 2012a.

Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security of logic encryption algorithms. In
Hardware Oriented Security and Trust (HOST), 2015 IEEE International Symposium on, pages 137–143. IEEE,
2015.

Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated circuit (IC) decamouflaging: Reverse
engineering camouflaged ICs within minutes. In 22nd Annual Network and Distributed System Security Symposium,
NDSS, San Diego, California, USA, pages 1–14, February 8-11, 2015.

18

https://doi.org/10.1109/TETC.2018.2795706

arXiv Template A PREPRINT

Yang Xie and Ankur Srivastava. Mitigating SAT attack on logic locking. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 127–146. Springer, 2016.

Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic locking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(2):199–207, 2018.

Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. Sarlock: SAT attack
resistant logic locking. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages
236–241. IEEE, 2016b.

Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf, Jeyavijayan Rajendran, and
Ozgur Sinanoglu. Provably-secure logic locking: From theory to practice. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1601–1618, 2017a.

Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-lock: A security-corruptibility trade-off resilient
logic locking scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 175–202,
2020.

Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur Srivastava. Strong anti-sat: Secure and
effective logic locking. In 2020 21st International Symposium on Quality Electronic Design (ISQED), pages 199–205.
IEEE, 2020.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Rajendran. Security analysis of anti-SAT.
In Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pages 342–347. IEEE, 2017b.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Rajendran. Removal attacks on logic
locking and camouflaging techniques. IEEE Transactions on Emerging Topics in Computing, 8(2):517–532, 2020.
doi:10.1109/TETC.2017.2740364.

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin. Appsat: Approximately deobfuscating
integrated circuits. In 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages
95–100. IEEE, 2017a.

Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel bypass attack and bdd-based tradeoff
analysis against all known logic locking attacks. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 189–210. Springer, 2017.

Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic locking. IEEE Transactions on
Information Forensics and Security, 15:2514–2527, 2020.

Abhrajit Sengupta, Nimisha Limaye, and Ozgur Sinanoglu. Breaking cas-lock and its variants by exploiting structural
traces. In IACR Transactions on Cryptographic Hardware and Embedded Systems. Cryptology ePrint Archive, Paper
2021/581, 2021.

Vijaypal Singh Rathor, Munesh Singh, Kshira Sagar Sahoo, and Saraju P. Mohanty. Gatelock: Input-dependent
key-based locked gates for sat resistant logic locking. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 32(2):361–371, 2024. doi:10.1109/TVLSI.2023.3340350.

Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and Bruno Rouzeyre. A novel hardware logic
encryption technique for thwarting illegal overproduction and hardware trojans. In 2014 IEEE 20th International
On-Line Testing Symposium (IOLTS), pages 49–54. IEEE, 2014.

Kyle Juretus and Ioannis Savidis. Reducing logic encryption overhead through gate level key insertion. In 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1714–1717. IEEE, 2016a.

Bao Liu and Brandon Wang. Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks.
In Proceedings of the conference on Design, Automation & Test in Europe (DATE), pages 1–6. IEEE, 2014.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Security analysis of logic obfuscation. In
Proceedings of the 49th Annual Design Automation Conference, pages 83–89. ACM, 2012b.

Yu-Wei Lee and Nur A Touba. Improving logic obfuscation via logic cone analysis. In 2015 16th Latin-American Test
Symposium (LATS), pages 1–6. IEEE, 2015.

Stephen M Plaza and Igor L Markov. Solving the third-shift problem in IC piracy with test-aware logic locking. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(6):961–971, 2015.

Vijaypal Singh Rathor and G. K. Sharma. A lightweight robust logic locking technique to thwart sensitiza-
tion and cone-based attacks. IEEE Transactions on Emerging Topics in Computing, 9(2):811–822, 2021.
doi:10.1109/TETC.2019.2935250.

Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z Pan. Provably secure camouflaging
strategy for IC protection. In International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2016.

19

https://doi.org/10.1109/TETC.2017.2740364
https://doi.org/10.1109/TVLSI.2023.3340350
https://doi.org/10.1109/TETC.2019.2935250

arXiv Template A PREPRINT

Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic encryption algorithms. In Proceedings of the
Great Lakes Symposium on VLSI 2017, pages 179–184. ACM, 2017.

Yuanqi Shen, You Li, Shuyu Kong, Amin Rezaei, and Hai Zhou. Sigattack: New high-level sat-based attack on logic
encryptions. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 940–943. IEEE,
2019.

Yuanqi Shen, Amin Rezaei, and Hai Zhou. Sat-based bit-flipping attack on logic encryptions. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 629–632. IEEE, 2018.

Soroush Khaleghi, Kai Da Zhao, and Wenjing Rao. IC piracy prevention via design withholding and entanglement. In
The 20th Asia and South Pacific Design Automation Conference, pages 821–826. IEEE, 2015.

Vijaypal Singh Rathor, Bharat Garg, and G.K. Sharma. New lightweight anti-sat block design and ob-
fuscation technique to thwart removal attack. Integration, 75:178–188, 2020b. ISSN 0167-9260.
doi:https://doi.org/10.1016/j.vlsi.2020.05.001. URL https://www.sciencedirect.com/science/article/
pii/S0167926019306510.

Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. What to lock? functional and parametric locking. In Proceedings of the on Great Lakes Symposium on
VLSI 2017, pages 351–356, 2017c.

Fangfei Yang, Ming Tang, and Ozgur Sinanoglu. Stripped functionality logic locking with hamming distance-based
restore unit (sfll-hd)–unlocked. IEEE Transactions on Information Forensics and Security, 14(10):2778–2786, 2019.

Kyle Juretus and Ioannis Savidis. Increased output corruption and structural attack resilience for sat attack secure
logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 40(1):38–51, 2021.
doi:10.1109/TCAD.2020.2988629.

Nimisha Limaye, Emmanouil Kalligeros, Nikolaos Karousos, Irene G. Karybali, and Ozgur Sinanoglu. Thwarting all
logic locking attacks: Dishonest oracle with truly random logic locking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(9):1740–1753, 2021. doi:10.1109/TCAD.2020.3029133.

Jingbo Zhou and Xinmiao Zhang. Generalized sat-attack-resistant logic locking. IEEE Transactions on Information
Forensics and Security, 16:2581–2592, 2021.

Quang-Linh Nguyen, Sophie Dupuis, Marie-Lise Flottes, and Bruno Rouzeyre. Skg-lock+: A provably secure logic
locking schemecreating significant output corruption. Electronics, 11(23):3906, 2022.

Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan. Chaolock: Yet another sat-hard
logic locking using chaos computing. In 2021 22nd International Symposium on Quality Electronic Design (ISQED),
pages 387–394. IEEE, 2021.

Nimisha Limaye, Satwik Patnaik, and Ozgur Sinanoglu. Valkyrie: Vulnerability assessment tool and attack for
provably-secure logic locking techniques. IEEE Transactions on Information Forensics and Security, 17:744–759,
2022.

Satwik Patnaik, Nimisha Limaye, and Ozgur Sinanoglu. Hide and seek: Seeking the (un)-hidden key in provably-secure
logic locking techniques. IEEE Transactions on Information Forensics and Security, 17:3290–3305, 2022.

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin. Cyclic obfuscation for creating
SAT-unresolvable circuits. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 173–178. ACM,
2017b.

Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack on cyclic logic encryptions. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 49–56. IEEE, 2017.

Amin Rezaei, You Li, Yuanqi Shen, Shuyu Kong, and Hai Zhou. Cycsat-unresolvable cyclic logic encryption using
unreachable states. In Proceedings of the 24th Asia and South Pacific Design Automation Conference, pages 358–363,
2019.

Xiang-Min Yang, Pei-Pei Chen, Hsiao-Yu Chiang, Chia-Chun Lin, Yung-Chih Chen, and Chun-Yao Wang. Looplock
2.0: An enhanced cyclic logic locking approach. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(1):29–34, 2022. doi:10.1109/TCAD.2021.3053912.

Pei-Pei Chen, Xiang-Min Yang, Yu-Cheng He, Yung-Chih Chen, Yi-Ting Li, and Chun-Yao Wang. Looplock 3.0: A
robust cyclic logic locking approach. In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 594–599, 2024. doi:10.1109/ASP-DAC58780.2024.10473877.

Yadi Zhong and Ujjwal Guin. Complexity analysis of the sat attack on logic locking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, PP:1–1, 10 2023. doi:10.1109/TCAD.2023.3240933.

20

https://doi.org/https://doi.org/10.1016/j.vlsi.2020.05.001
https://www.sciencedirect.com/science/article/pii/S0167926019306510
https://www.sciencedirect.com/science/article/pii/S0167926019306510
https://doi.org/10.1109/TCAD.2020.2988629
https://doi.org/10.1109/TCAD.2020.3029133
https://doi.org/10.1109/TCAD.2021.3053912
https://doi.org/10.1109/ASP-DAC58780.2024.10473877
https://doi.org/10.1109/TCAD.2023.3240933

arXiv Template A PREPRINT

Kyle Juretus and Ioannis Savidis. Reduced overhead gate level logic encryption. In Proceedings of the 26th edition on
Great Lakes Symposium on VLSI, pages 15–20. ACM, 2016b.

Rajit Karmakar, N Prasad, Santanu Chattopadhyay, Rohit Kapur, and Indranil Sengupta. A new logic encryption
strategy ensuring key interdependency. In VLSI Design and 2017 16th International Conference on Embedded
Systems (VLSID), 2017 30th International Conference on, pages 429–434. IEEE, 2017.

(2011) nangate freepdk45 open cell library. nangate inc, 2011. In [Online]. Available:
http://www.nangate.com/?pageid=2325/, 2011.

Vijaypal Singh Rathor is currently working as an Assistant Professor in the Department of CSE at
PDPM Indian Institute of Information Technology, Design and Manufacturing (IIITDM), Jabalpur, India, since August
2021. His research interest includes Hardware Security, Machine Learning and IoT, and Cloud Computing. He is also a
member of IEEE since 2017.

Munesh Singh is currently working as an Assistant Professor in PDPM Indian Institute of Information
Technology, Design and Manufacturing (IIITDM), Jabalpur, India. He has published many research articles in IEEE,
Springer, and Elsevier journals. His research interests include Sensor Networks, Cooperative Computing, Radar
Surveillance, Cyber Security, Machine Learning, and Intelligent Robotics.

Kshira Sagar Sahoo (Senior Member, IEEE) completed his Ph.D. (2019) and M.Tech (2014) from
Dept. of CSE, National Institute of Technology, Rourkela, India and Indian Institute of Technology, Kharagpur, India
respectively. He is currently acting as a postdoctoral Kempe fellow at the dept of computing science, Umeå University,
Sweden. He has authored more than 90 research articles in top tier journals and conferences, 2 edited books, and 8
granted and pending patents. He is recognized as top 2% scientists in the world 2023 list by Stanford University. His
research interests are SDN, SDIoT, Edge Computing, IoT, Machine Learning and Distibuted Computing. He is a senior
member of IEEE and IETE.

21

arXiv Template A PREPRINT

Saraju P. Mohanty (Senior Member, IEEE) received the bachelor’s degree (Honors) in electrical
engineering from the Orissa University of Agriculture and Technology, Bhubaneswar, in 1995, the master’s degree
in Systems Science and Automation from the Indian Institute of Science, Bengaluru, in 1999, and the Ph.D. degree
in Computer Science and Engineering from the University of South Florida, Tampa, in 2003. He is a Professor with
the University of North Texas. His research is in “Smart Electronic Systems” which has been funded by National
Science Foundations (NSF), Semiconductor Research Corporation (SRC), U.S. Air Force, IUSSTF, and Mission
Innovation. He has authored 500 research articles, 5 books, and 10 granted and pending patents. His Google Scholar
h-index is 56 and i10-index is 258 with 14,000 citations. He is regarded as a visionary researcher on Smart Cities
technology in which his research deals with security and energy aware, and AI/ML-integrated smart components.
He introduced the Secure Digital Camera (SDC) in 2004 with built-in security features designed using Hardware
Assisted Security (HAS) or Security by Design (SbD) principle. He is widely credited as the designer for the first
digital watermarking chip in 2004 and first the low-power digital watermarking chip in 2006. He is a recipient of 19
best paper awards, Fulbright Specialist Award in 2021, IEEE Consumer Electronics Society Outstanding Service Award
in 2020, the IEEE-CS-TCVLSI Distinguished Leadership Award in 2018, and the PROSE Award for Best Textbook
in Physical Sciences and Mathematics category in 2016. He has delivered 29 keynotes and served on 15 panels at
various International Conferences. He has been serving on the editorial board of several peer-reviewed international
transactions/journals, including IEEE Transactions on Big Data (TBD), IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), IEEE Transactions on Consumer Electronics (TCE), and ACM Journal on
Emerging Technologies in Computing Systems (JETC). He has been the Editor-in-Chief (EiC) of the IEEE Consumer
Electronics Magazine (MCE) during 2016-2021. He served as the Chair of Technical Committee on Very Large Scale
Integration (TCVLSI), IEEE Computer Society (IEEE-CS) during 2014-2018 and on the Board of Governors of the
IEEE Consumer Electronics Society during 2019-2021. He serves on the steering, organizing, and program committees
of several international conferences. He is the steering committee chair/vice-chair for the IEEE International Symposium
on Smart Electronic Systems (IEEE-iSES), the IEEE-CS Symposium on VLSI (ISVLSI), and the OITS International
Conference on Information Technology (OCIT). He has mentored 3 post-doctoral researchers, and supervised 17 Ph.D.
dissertations, 27 M.S. theses, and 27 undergraduate projects.

22

	Introduction
	Contributions of This Paper
	Problem Addressed in this Paper
	Solution Proposed in this Paper
	Novelty and Significance of the Solution

	Related Prior Works
	IDKLL: INPUT DEPENDENT KEY-BASED LOGIC LOCKING
	Concept of IDKLL
	Locking a Design using IDKLL
	Use of LUT based Tamper-Proof Memory for IDKLL
	Complete Generalized Structure of IDKLL after Integrating LUT based Memory

	SUB-Lock: Sub-Circuit Replacement based IDKLL
	Security Analysis of Proposed Technique
	Experimental Results and Analysis
	Experimental Setup
	SAT Attack Results and Analysis
	Overhead Results and Analysis
	Comparative Analysis

	Conclusion

