
Dept. of CSEE CDA 4203: Computer System Design 1

Instruction Set Architecture
Instructor : Saraju P. Mohanty

PART1
•Computer Architecture Concepts
•Operand Addressing
•Addressing Modes

Sources
•Logic and Computer Design Fundamentals by M. M. Mano and C. 
R. Kime.

•Computer Organization and Design: The Hardware/Software 
Interface by David A. Patterson and John L. Hennessy. 

•Dr. Valavanis lectures



Dept. of CSEE CDA 4203: Computer System Design 2

Concepts: Computer  Architecture
• Machine Language: The binary language in which instructions 

are defined and stored in memory.
• Assembly Language: A symbolic language that replaces binary 

opcodes and addresses with symbolic names and that provides 
other features helpful to the programmer.

• Computer organization: It consists of structures such as 
datapaths, control units, memories, and the buses that 
interconnect them.

• Computer hardware: It refers to the logic, the electronic 
technologies employed, and the various physical design aspects 
of the computer.

• Computer architecture: Encompasses the whole computer, 
including instruction set architecture, organization, and hardware.

• Instruction: A word of the machine language. 
• Instruction set architecture: Vocabulary of the machine language.



Dept. of CSEE CDA 4203: Computer System Design 3

Concepts: Hardware – Software boundary

Java Program C Program Ada Program

Compiler Compiler Compiler

Instruction Set Architecture

Microcode

Hardware



Dept. of CSEE CDA 4203: Computer System Design 4

Concepts: Basic Computer  Operation Cycle
Each instruction is executed in  sequence of steps:

•Step 1 : Fetch the instruction from memory 
into a control register.

•Step 2 : Decode the instruction.
•Step 3 : Locate the operands used by the 
instruction.

•Step 4 : Fetch operands from memory (if 
necessary).

•Step 5 : Execute the operation in processor 
registers.

•Step 6 : Store the results in the proper place.
•Step 7 : Go back to step 1 to fetch the next 
instruction.

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction



Dept. of CSEE CDA 4203: Computer System Design 5

Concepts: What Must be Specified ISA?

• Instruction Format or Encoding

– how is it decoded?

• Location of operands and result

– where other than memory?

– how many explicit operands?

– how are memory operands located?

– which can or cannot be in memory?

• Data type and Size

• Operations

– what are supported

• Successor instruction

– jumps, conditions, branches



Dept. of CSEE CDA 4203: Computer System Design 6

Concepts: Instruction Format 

• The instruction format is depicted in a rectangular box 
symbolizing the bits of the binary instruction.

• Bits are grouped into fields.
• Typical instruction fields:

– Opcode field – specifies the operation to be performed.
– Address field – provides either a memory address or an 

address for selecting a processor register.
– Mode field – specifies the way the address field is to be 

interpreted.
• Other additional fields are sometimes used, like an operand 

field in an immediate operand instruction or a field that gives 
the number of positions to shift in a shift-type instruction.



Dept. of CSEE CDA 4203: Computer System Design 7

Concepts: Register  Set

• Register Set consists of all registers in the CPU that are 
accessible to the programmer.

• Register set includes the programmer-accessible part of the 
register file and the Program Counter (PC).

• Some of the programmer-accessible registers are,
• Processor Status Register (PSR) – contains flip-flops that are 

selectively set by status values C,N,V and Z from the ALU.
• Stack Pointer (SP).

• The bits of the PSR are referred to as the condition codes or the 
flags, since they are used to make decisions that determine the 
program flow.



Dept. of CSEE CDA 4203: Computer System Design 8

Stored Program Concept

• Memory can contain the source code, the 
corresponding complied machine code, and the even 
the compiler that generates the machine code.

• Both the instructions and data of many types are stored 
as numbers in memory.

• Thus, it is difficult to determine if the number stored in 
the memory is an instruction or data !!

• All the memory words that PC points are interpreted as 
instructions.

• Memory word whose addresses are specified by 
instructions are interpreted as operands.



Dept. of CSEE CDA 4203: Computer System Design 9

Operand Addressing

• Operand residing in memory is specified by its address.
• Operand residing in a processor register is specified by a register

address  (a binary code of n bits used to specify one among 2n

registers).
• Explicit address – If an operand has an address in the 

instruction, it is said to be explicitly addressed.
• Implied address – When an operand does not have an explicit 

address, its location is specified either by the opcode of the 
instruction or by an address assigned to one of the other 
operands.

• We will consider (as an example), the ADD instruction that has 
three operands: the addend, the augend and the result.

• To illustrate the influence of the number of operands on 
computer programs, we will evaluate the arithmetic statement: 

X=(A+B)(C+D)



Dept. of CSEE CDA 4203: Computer System Design 10

Operand Addressing: Three-address instructions
ADD T1, A, B M[T1] � M[A]+M[B]
ADD T2, C, D M[T2] � M[C]+M[D]
MUL X, T1, T2 M[X] � M[T1] x M[T2]
M[* ] denotes operand at the address symbolized by * . T1, T2 
are temporary storage locations in memory.
Same program can use registers as temporary storage locations.
ADD R1, A, B R1 � M[A]+M[B]
ADD R2, C, D R2� M[C]+M[D]
MUL X, R1, R2 M[X] � R1 *  R2

• Advantage: It results in short programs for evaluating 
expressions.

• Disadvantage: The binary coded instructions require more bits 
to specify three addresses, particularly if they are memory 
addresses.



Dept. of CSEE CDA 4203: Computer System Design 11

Operand Addressing: Two-address instructions

MOVE T1, A M[T1] � M[A]
ADD T1, B M[T1] � M[T1]+M[B]
MOVE X, C M[X] � M[C]
ADD X, D M[X] � M[X]+M[D]
MUL X, T1 M[X] � M[X] x M[T1]

If temporary storage register R1 available, it can replace T1.

• Each address field can specify either a possible register or a 
memory address.

• It results in a little longer program than with three-address 
instructions.



Dept. of CSEE CDA 4203: Computer System Design 12

Operand Addressing: One-address instructions

Use an implied address – such as a register called an 
accumulator ACC for obtaining one of the operands and as the 
location of the result. So,

LD A ACC � M[A]
ADD B ACC � ACC+M[B]
ST X M[X] � ACC
LD C ACC � M[C]
ADD D ACC � ACC+M[D]
MUL X ACC � ACC *  M[X]
ST X M[X] � ACC 

The number of instructions is more than that with two-address 
instructions.



Dept. of CSEE CDA 4203: Computer System Design 13

Operand Addressing: Zero-address instructions
Use a stack – a structure that stores information such that the item 
stored last is the first retrieved - last in, first out (LIFO) queue. 
Word at the top of the stack is referred to as TOS. The one below 
is as TOS-1. So,

PUSH  A TOS � M[A]
PUSH  B TOS � M[B]
ADD TOS � TOS+TOS-1

PUSH  C TOS � M[C]
PUSH  D TOS � M[D]
ADD TOS � TOS=TOS-1

MUL TOS � TOS x TOS-1

POP  X M[X] � TOS
Where TOS is the Top of the Stack. It requires more number of 
instructions, but, uses no addressed memory locations or registers 
to execute data manipulation instructions.



Dept. of CSEE CDA 4203: Computer System Design 14

Operand Addressing: Addressing Architectures

Addressing architectures are defined by the number of addresses to 
the memory in the instructions and the number of operands 
addressed:
•Memory-to-memory: an architecture which has all accesses to 
memory. e.g. three-address instructions.
•Register-to-register or load/store: allows only one memory 
address and restricts its use to load and store types of instructions.
•Register-memory: allows one access to memory and one to a 
register, used primarily to provide compatibility with older 
software using a specific architecture.
•Single-accumulator architecture: This architecture is used for the 
one-address instructions and the single address is used for 
accessing memory.
•Stack architecture: This architecture is used for the zero-address 
instructions.



Dept. of CSEE CDA 4203: Computer System Design 15

Addressing Modes
The addressing mode specifies a rule for interpreting or modifying 
the address field of the instruction before the operand is actually 
referenced. The resulting address is called the effective address.

Computers use addressing-mode techniques to accommodate one or 
both of the following provisions:  

• Provide programming flexibility to the user via pointers to 
memory, counters for loop control, indexing of data, and 
relocation of programs.

• Reduce the number of bits in the address fields of the instruction.
Example of instruction format with a distinct addressing-mode 
field, 



Dept. of CSEE CDA 4203: Computer System Design 16

Addressing Modes: Different Types
•Implied mode – needs no address field at all. The operand is specified 
implicitly in the definition of the opcode. (e.g.:- accumulator instructions).

•Immediate mode – the operand is specified in the instruction itself.  Useful 
for initializing registers to a constant value.

•Register and register-indirect modes – address field specifies a register. In 
the indirect mode, the specified register holds the address of the operand in 
memory.

•Direct addressing mode – the address field of the instruction gives the 
address of the operand in memory.

•Indirect addressing mode – The address field of the instruction gives the 
address at which the effective address is stored in memory.

•Relative addressing mode – the address field of the instruction is added to 
the content of a specified register in the CPU (PC) to evaluate the effective 
address.

Effective address = Address part of the instruction + Contents of PC
•Indexed addressing mode – The content of the index register is added to 
the address part of the instruction to obtain the effective address. The 
index register may be a special CPU register or simply a register in a 
register file.


