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Advanced VLSI Systems
Instructor: Saraju P. Mohanty, Ph. D.

Lecture 6: Wire and Delay

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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Outline of the Lecture

• Capacitance of wire
• Resistance of wire
• Inductance of wire
• Elmore Delay Model
• Delay Definitions
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The Wire

transmitters receivers

schematics physical
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Interconnect Impact on Chip
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Wire Models

All-inclusive model Capacitance-only
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Impact of Interconnect Parasitics
• Interconnect parasitics

– reduce reliability
– affect performance and power consumption

• Classes of parasitics
– Capacitive
– Resistive
– Inductive
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Capacitance of Wire Interconnect
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Capacitance: The Parallel Plate Model
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Permittivity
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Fringing Capacitance
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Fringing versus Parallel Plate

(from [Bakoglu89])



CSCE 6651: Advanced VLSI Systems

Interwire Capacitance

fringing parallel
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Impact of Interwire Capacitance

(from [Bakoglu89])
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Wiring Capacitances (0.25 μm CMOS)
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Wire Resistance 
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Interconnect Resistance 
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Dealing with Resistance
• Selective Technology Scaling
• Use Better Interconnect Materials

– reduce average wire-length
– e.g. copper, silicides

• More Interconnect Layers
– reduce average wire-length
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Polycide Gate MOSFET

n+n+

SiO2

PolySilicon

Silicide

p

Silicides: WSi 2, TiSi 2, PtSi2 and TaSi

Conductivity: 8-10 times better than Poly
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Sheet Resistance
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Modern Interconnect
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Example: Intel 0.25 micron Process

5 metal layers
Ti/Al - Cu/Ti/TiN
Polysilicon dielectric



CSCE 6651: Advanced VLSI Systems

The Lumped Model
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The Lumped RC-Model
The Elmore Delay



CSCE 6651: Advanced VLSI Systems

The Ellmore Delay
RC Chain
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Wire Model

Assume: Wire modeled by N equal-length segments 

For large values of N:
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The Distributed RC-line
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Step-response of RC wire as a 
function of time and space
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RC-Models
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Driving an RC-line

Vin

Rs Vout
(rw,cw,L)
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Design Rules of Thumb

• RC delays should only be considered when tpRC >> 
tpgate of the driving gate

Lcrit >> √ tpgate/0.38RC
• RC delays should only be considered when the rise 

(fall) time at the line input is smaller than RC, the rise 
(fall) time of the line

trise < RC
– when not met, the change in the signal is slower than the 

propagation delay of the wire
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Delay Definitions

• Combinational logic has two types of delay:
– Propagation
– Contamination

• When the input changes, output retains it old 
value for at least the contamination delay and 
take on its new value in at most the propagation
delay.

• The gate that charges or discharges a node is 
called driver, and the gates and wires that being 
driven are called load.
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Delay Definitions : Prop. Vs Contamination

• The output remains unchanged for a time period 
equal to the contamination delay, tcd

• The new output value is guaranteed to valid after 
a time period equal to the propagation delay, tpd
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Delay Definitions : Propagation

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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Delay Definitions : Contamination

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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Delay Definitions : Propagation
• tpdr: rising propagation delay

– Time delay from the reference voltage (VDD/2) at the 
input to the reference voltage at the output, when 
output voltage is going from low-to-high.

• tpdf: falling propagation delay
– Time delay from the reference voltage (VDD/2) at the 

input to the reference voltage at the output, when 
output voltage is going from high-to-low. 

• tpd: (average) propagation delay (also max-time)
– defined in two ways: (maximum or average of two)

• maximum (tpdr, tpdf)
• tpd = (tpdr + tpdf)/2
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Delay Definitions : Rise and Fall

• tr: rise time

–From output crossing 0.2 VDD to 0.8 VDD

• tf: fall time

–From output crossing 0.8 VDD to 0.2 VDD

• Rise / Fall times are also called slope or edge 
rates.

• Edge Rate: trf = (tr + tf)/2



CSCE 6651: Advanced VLSI Systems

Delay Definitions : Rise and Fall ….
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Simulated Inverter Delay

• Solving differential equations by hand is too hard
• SPICE simulator solves the equations 

numerically
– Uses more accurate I-V models too!

• But simulations take time to write
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Delay Estimation

• We would like to be able to easily estimate 
delay
– Not as accurate as simulation

• The step response usually looks like a 1st order 
RC response with a decaying exponential.

• Use RC delay models to estimate delay
– C = total capacitance on output node
– Use effective resistance R
– So that tpd = RC

• Characterize transistors by finding their 
effective R
– Depends on average current as gate switches
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Switch-level RC Delay Models

• RC models treat MOSFETs as switches in series 
with resistors.

• Unit effective resistance R can be obtained from 
any operating point of I-V characteristics as:

R = 1 / (∂Ids / ∂Vds)
• When ∂Vds is small the resistance R can be 

obtained by differentiating the Ids equation:
R = 1 / [β (Vgs- Vt)]

• NOTE: The above way of calculating resistance 
is not practically accurate as the non-ideal effects 
(velocity saturation) have strong impact on it.
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Switch-level RC Delay Models …

∂Vds

∂Ids

Slope of a curve 
gives conductance, 
inverse of which is 
resistance.
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Switch-level RC Delay Models …

• Use equivalent circuits for MOS transistors
– Ideal switch + capacitance and ON resistance
– Unit NMOS has resistance R, capacitance C
– Unit PMOS has resistance 2R, capacitance C

• Capacitance proportional to width: If unit effective 
resistance is R, then the transistor of width k
units has resistance R/k.

• Resistance inversely proportional to width: If C is 
the capacitance of a unit transistor, then the 
transistor of width k units has capacitance kC.
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RC Delay Models: Inverter
PMOS equivalent RC model:
• Width of transistor is k units
• Both gate and diffusion 

capacitances shown
• One terminal is shown 

connected to Vdd (n-well)

NMOS equivalent RC model:
• Width of transistor is k units
• Both gate and diffusion 

capacitances shown
• One terminal is shown 

connected to GND 
(substrate)
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RC Delay Models: Inverter …

Estimation of 
delay of a fanout-
of-1 inverter.

Inverter 
fanout-of-1

Equivalent circuit :
1st inverter driving 2nd

NMOS is of 1-unit 
width and PMOS is 
of 2-unit width to 
achieve equal fall / 
rise resistance.
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RC Delay Models: Inverter …

Equivalent circuit :
1st inverter driving 2nd

Equivalent circuit :
No switches

Not charged / 
discharged, 
connected to GND

Not charged / discharged, 
connected to supply •Tpd =R*(6C) =6RC

•Time constant 
τ = RC
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Effective Resistance and Capacitance

• Parallel and series transistors combine like 
conventional resistors.

• When in series: Total resistance is the sum of all
• When in parallel: Total conductance is the sum of 

conductance, inverse of which is the total 
resistance.

• Resistance is low if they are in parallel.
• Worst case delay when only one of several 

parallel transistors is ON.
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Effective R and C : 3-input NAND Example

Question: Sketch a 3-input NAND with transistor 
widths chosen to achieve effective rise and fall 
resistances equal to a unit inverter (R).

3

3

222

3

• Each NMOS should have R/3 
resistance

• Each PMOS should have R 
resistance (worst case one even 
one ON should provide R 
resistance).

• Since 1-unit NMOS has R 
resistance, so its W/L is 3.

• Also 1-unit PMOS has 2R 
resistance, so its W/L is 2.3-input NAND
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Effective R and C : 3-input NAND Capacitance

Question: Annotate the 3-input NAND gate with 
gate and diffusion capacitance.

2 2 2
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3-input NAND
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Effective R and C : 3-input NAND Capacitance
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3-input NAND

Recall
•Unit NMOS has resistance 

R, capacitance C
•Unit PMOS has resistance 

2R, capacitance C
•k units has capacitance kC.
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Effective R and C : 3-input NAND Capacitance

9C

3C

3C3

3

3

222
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Shorted capacitances 
deleted and remaining 
capacitances lumped.

3-input NAND
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