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Lcture 6: Wire and Delay

CSCE 6651
Advanced VLSI Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.
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Outline of the Lecture

CSE

Capacitance of wire
Resistance of wire
Inductance of wire
Elmore Delay Model
Delay Definitions
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CSE

Interconnect Impact on Chip
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Wire Models

CSE

All-inclusive model
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I Impact of Interconnect Parasitics

* |nterconnect parasitics
— reduce reliability
— affect performance and power consumption

» Classes of parasitics
— Capacitive
— Resistive
— Inductive
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Nature of Interconnect

Local Interconnect

Global Interconnect
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CSE

I Capacitance of Wire Interconnect
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Electrical-field lines
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CSE

Permittivity

Material g,

Free space 1
Aerogels ~1.5
Polyimides (organic) 3-4
Silicon dioxide 3.9

Glass-epoxy (PC board) 5
Silicon Nitride (S13N,) 7.5
Alumina (package) 9.5
Silicon 11.7
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Fringing Capacitance
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Fringing versus Parallel Plate

6

4
2L
E
o
(1
& 1_ —.‘--lll# ’-
o L - s
e — _,-“'
£ 06 i
S Y[ FiH =1 s
=t | --—-T#=05 y
o 0.4 £, =39
O B Sp-a*-iﬁw;u.hz‘e / -* ‘w

.{ [ —
0.2+ /f l:l ;_
-,.‘
4
o
01 1 oL | L1 11l
0.1 0.2 04 06 1 2 4 6 10

Weir

(from [Bakoglu89])

CSE CSCE 6651: Advanced VLSI Systems r( UN(%R]?%XAS



CSE

Interwire Capacitance
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fringing parallel
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Impact of Interwire Capacitance
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rmg Capacitances (0.25 um CMOS)

Field Active Poly All Al2 Al3 Al4
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Wire Resistance

R L
L Sheet Resistance
RO
- . R1
W

= R,

T
<—>

CSE CSCE 6651: Advanced VLS| Systems r( UN%%%S



Interconnect Resistance

Material p ($2-m)
Silver (Ag) 1.6 x 1078
Copper (Cu) 1.7 x 1078
Gold (Au) 2.2x 1078
Aluminum (Al) 2.7 %1078
Tungsten (W) 5.5 % 1078
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Dealing with Resistance

« Selective Technology Scaling

« Use Better Interconnect Materials
— reduce average wire-length
— e.g. copper, silicides

* More Interconnect Layers
— reduce average wire-length

CSE
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Polycide Gate MOSFET

Silicide

PolySilicon

Silicides: WSi 5, TiSi1,, PtSi; and TaSi

Conductivity: 8-10 times better than Poly
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Sheet Resistance

Material Sheet Resistance (/L)
n- or p-well diffusion 1000 — 1500
n', p diffusion 50 — 150
n, p* diffusion with silicide 3-5
n', p' polysilicon 150 — 200
n', p' polysilicon with silicide 45
Aluminum 0.05-0.1
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CSE

Modern Interconnect
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Example: Intel 0.25 micron Process

5 metal layers
Ti/Al - Cu/Ti/TiN
Polysilicon dielectric

LAYER  PITCH THICK A.R.

Isolation 0.67 0.40
Polysilicon 0.64 0.25 -

Metal 1 0.64 0.48 1.5

Metal 2 0.93 0.90 1.9

Metal 3 0.93 0.90 1.9

Metal 4 1.60 1.33 1.7

Metal 5 2.56 1.90 1.5
1m LLm

Layer pitch, thickness and aspect ratio
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The Lumped Model
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The Lumped RC-Model

The ElImore Delay
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The Ellmore Delay
RC Chain

CSE

N N N i

= ZR,3C= 5 C; 3R,
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TpN

CSE

d

Wire Model

Assume: Wire modeled by N equal-length segments

2 +
j%) (re +2rc+... +Nrc) = (rcl )N(N D -

For large values of N:

_RC _ rel’
N T T

N+1
= RC——
2N
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The Distributed RC-line
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CSE

Step-response of RC wire as a
function of time and space
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RC-Models

Voltage Range | Lumped RC- Distributed
network RC-network
0—-30% (t) 0.69 RC 0.38 RC
0—63% (") RC 0.5 RC
10%—90% (t,) 2.2 RC 0.9 RC

Step Response of Lumped and Distributed RC Netw orks:
Points of Interest.

E k2 k2

Ci2 — = Cf2 W
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CSE

Vmi |

R,C
= R,C,, +

Driving an RC-line

(rwCusl)

=RC,+05r,c,L°

t, = 0.69R,C, +0.38R,C,
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Design Rules of Thumb

’ RC delays should only be considered when t . >>
t,qate Of the driving gate

Lerit >> V' t,,,,/0.38RC

 RC delays should only be considered when the rise
(fall) time at the line input is smaller than RC, the rise
(fall) time of the line

trise <RC

— when not met, the change in the signal is slower than the
propagation delay of the wire
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Delay Definitions

« Combinational logic has two types of delay:
— Propagation
— Contamination
* When the input changes, output retains it old
value for the delay and

take on its new value in at most the propagation
delay.

 The gate that charges or discharges a node is
called driver, and the gates and wires that being
driven are called load.
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li®e1ay Definitions : Prop. Vs Contamination

VDD A
Aﬂ Y Y XX XX
g =
GND e = =~ =

il
e The output remains unchanged for a time period

equal to the contamination delay, t_,

e The new output value Is guaranteed to valid after
a time period equal to the propagation delay, t,
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Delay Definitions : Propagation

Y — y Vour < Top < top
in out > D
—] Vor \
vC‘L

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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CSE

Delay Definitions : Contamination

Y

Y

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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Delay Definitions : Propagation

* {4, Fising propagation delay
—Time delay from the reference voltage (Vpp/2) at the
input to the reference voltage at the output, when
output voltage is going from low-to-high.
* t,4s falling propagation delay

—Time delay from the reference voltage (Vpp/2) at the
input to the reference voltage at the output, when
output voltage is going from high-to-low.

* t,q: (average) propagation delay (also max-time)
— defined in two ways: (maximum or average of two)
* maximum (t g, t )
’ 1:pd = (tpdr + tpdf)/ 2
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I Delay Definitions : Rise and Fall

* t.:rise time

—From output crossing 0.2 V5 to 0.8 Vi
* t;: fall time

—From output crossing 0.8 Vpy to 0.2 Vpp

* Rise / Fall times are also called slope or edge
rates.

* Edge Rate: t; = (t. + t;)/2
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Delay Definitions : Rise and Fall ....

S VA

OuUT

GND
80%\ I 80%
\20% 20% /.
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Simulated Inverter Delay

Solving differential equations by hand is too hard

SPICE simulator solves the equations
numerically
— Uses more accurate |-V models too!
 But simulations take time to write
J— \ // ______ \\
1.5 Vs e
N o > f
Vin/ fpari OOP \tpdr,/_ 83p
0.5 I WVou Vg
' / | \/
/ 3 X
00d— 7 e PN
0.0 200p 400p t(S)SOOp 800p 1
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Delay Estimation

« We would like to be able to easily estimate
delay

— Not as accurate as simulation

* The step response usually looks like a 15t order
RC response with a decaying exponential.

« Use RC delay models to estimate delay
— C = total capacitance on output node

— Use effective resistance R
— So thatt,, = RC

 Characterize transistors by finding their
effective R

— Depends on average current as gate switches
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Switch-level RC Delay Models

* RC models treat MOSFETs as switches in series
with resistors.

* Unit effective resistance R can be obtained from
any operating point of |-V characteristics as:

R=1/(dly/ V)

* When 0V is small the resistance R can be
obtained by differentiating the | equation:

* NOTE: The above way of calculating resistance
IS not practically accurate as the non-ideal effects
(velocity saturation) have strong impact on it.
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Switch-level RC Delay Models ...

300 Vgs=‘l.8
/ Slope of a curve
20 / Ol 4 gives conductance,
00 iInverse of which is
/ - OV resistance.
"

0 03 06 09 12 15 18
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Switch-level RC Delay Models ...

» Use equivalent circuits for MOS transistors
— ldeal switch + capacitance and ON resistance
— Unit NMOS has resistance R, capacitance C

« Capacitance proportional to width: If unit effective
resistance is R, then the transistor of width k
units has resistance R/k.

» Resistance inversely proportional to width: If C is
the capacitance of a unit transistor, then the
transistor of width k units has capacitance kC.
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RC Delay Models: Inverter

s IkC PMOS equivalent RC model:

« Width of transistor is k units
d T o 2Rk« Both _gate and diffusion
gﬂ{k < > QL,\? T capacitances shown
S

HKC e« One terminal is shown

| connected to V4 (n-well)

RIS gkC « Width of transistor is k units
- Both gate and diffusion
g%Ek <« > g * capacitances shown

S _VRC * One terminal is shown
\ gkc connected to GND
(substrate)
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RC Delay Models: Inverter ...

IZC
o Estimation of
T — delay of a fanout-
—2C Af-1i
ﬂ 2 _°| 5 \’_—FZC of-1 inverter.
A e v
PG 1. | _ NMOS is of 1-unit
RS [, TC  width and PMOS is
AV4

of 2-unit width to
achieve equal fall /
rise resistance.

Equivalent circuit :
1st inverter driving 2nd
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RC Delay Models: Inverter ...

T,4 =R*(6C) =6RC

_ | _ eTime constant
Lo T% 1=RC

Equivalent circuit :
No switches

Equivalent circuit :
1st inverter driving 2nd
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ffective Resistance and Capacitance

e Parallel and series transistors combine like
conventional resistors.

* When in series: Total resistance is the sum of all

: Total conductance is the sum of
conductance, inverse of which is the total
resistance.

* Resistance is low if they are in parallel.

 Worst case delay - when only one of several
parallel transistors is ON.
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T®tective R and C : 3-input NAND Example

Question: Sketch a 3-input NAND with transistor
widths chosen to achieve effective rise and fall
resistances equal to a unit inverter (R).

« Each NMOS should have R/3
45 (1B -

resistance

« Each PMOS should have R
resistance (worst case one even
one ON should provide R
resistance).

e Since 1-unit NMOS has R
resistance, so its W/L is 3.

* Also 1-unit PMOS has 2R
3-input NAND resistance, so its W/L is 2.
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Mctive R and C : 3-input NAND Capacitance

Question: Annotate the 3-input NAND gate with
gate and diffusion capacitance.

4
N}

2 2

racy i rgy By EED

<

3-input NAND
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20 S5 2005 129 5
#[2__45—0 %[2__45—0 %[2__45—C Recall

s *Unit NMOS has resistance
- —3C R, capacitance C

3(3@ ‘__;E *Unit PMOS has resistance
- 3C .

=18 v 2R, capacitance C

f —3_—;; 3C <k units has capacitance kC.

3C$ 1 3c

avd
3-input NAND
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s ARCARE:
a0
— 3 \V4 Shorted capacitances
ng %?3C deleted and remaining
550 %}%C capacitances lumped.
T 5C V4
v v
3-input NAND
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