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CSCI 5330
Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 10 : Design Margin, 
Reliability and Scaling 

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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Lecture Outline

• Design Margin
– Supply Voltage, Temperature, Process Variation, etc.

• Reliability
– Electromigration, Self-heating, Hot-carriers, etc.

• Scaling
– Transistors, Interconnect, etc.
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Design Margin

• Three different sources of variation:
– Environmental

• Supply voltage
• Operating temperature

– Manufacturing
• Process variation

• Variations can be modeled as uniform or 
Gaussian distribution.

• Objective: Design a circuit that operates reliable 
over extreme ranges of the above variations. 
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Design Margin : Supply Voltage

• ICs are designed to operate at nominal supply 
voltage.

• Supply voltage may vary due to:
– IR drop
– L di/dt noise (self inductance)
– M di/dt noise (mutual inductance)

• The delay in a device (td) that determines the 
maximum frequency (fmax) or the clock cycle time 
(T) is Td = k Vdd / (Vdd-Vth)α. Here, k and α are 
technology dependent constants.
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Design Margin : Temperature Sensitivity

• Increasing temperature
– Reduces mobility
– Reduces Vth

• ION decreases with temperature
• IOFF increases with temperature
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Design Margin : Parameter Variation

• Transistors have uncertainty in parameters
– Process: Leff, Vth, tox of nMOS and pMOS
– Vary around typical (T) values

• Fast (F)
– Leff: short
– Vth:  low
– tox:  thin

• Slow (S): opposite
• Not all parameters are independent

for nMOS and pMOS
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Design Margin : Environmental Variation

• VDD and T also vary in time and space
• Fast:

– VDD: high
– T:     low

70 C1.8T
125 C1.62S

0 C1.98F
TemperatureVoltageCorner
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Design Margin : Corners

• Process corners describe worst case variations
– If a design works in all corners, it will probably work 

for any variation.
• Describe corner with four letters (T, F, S)

– NMOS speed
– PMOS speed
– Voltage
– Temperature
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Design Margin : Important Corners

• Some critical simulation corners include

??FSPseudo-NMOS

SFFFSubthrehold
leakage

FFFFPower

SSSSCycle time

TemperatureVDDPMOSNMOSPurpose
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Reliability
• Designing reliable CMOS chips are essential.
• Mean Time Between Failure :

MTBF = (#devices * Hrs of Operation) / # Failures

• Failures in Time (FIT) : The number of failures that 
would occur every thousand hours per million devices, 
i.e. 109 * (failure rate / hour).
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Reliability : Electromigration

• Electromigration decreases reliability.
• Depends on current density.
• Occurs in wires carrying DC rather than AC, as 

in DC the electrons flow in a same direction.
• Mean Time to Failure :

MTF α exp(Ea/kT) / Jn
dc

Here, Ea is active energy (can be experimentally 
determined) and n is constant (=2).

• The electromigration DC current limits vary with 
materials, severe for aluminum than copper.
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Reliability : Electromigration

• For electromigration we need a lot of electrons, 
and also we need electron scattering. 
Electromigration does not typically occur in 
semiconductors, but may in some very heavily 
doped semiconductor materials.

• Electromigration can lead to either open circuit or 
short circuit failure.

Open circuit failure Hillocking, short circuit failure 
Source: http://www.csl.mete.metu.edu.tr/Electromigration/emig.htm
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Reliability : Self-heating

• Typically bidirectional signal line’s RMS (root 
mean square) current density is limited by self-
heating.

• Self-heating may cause temperature-induced 
electromigration problems in bidirectional signal 
lines.

• Self-heating is more prominent for SOI processes 
because of poor thermal conductivity of SiO2.

• RMS current is calculated as:
Irms = √ (∫ I(t)2dt / T)
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Reliability : Self-heating and Electromigration

• Both DC and AC current 
density limit the 
operation.

• DC current: problem in 
power and ground lines

• AC current: problem in 
bidirectional signal lines

• Solution: widening the 
lines or reducing the 
transistor sizes, 
subsequently the current.
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Reliability : Hot Carriers

• High-energy (hot) carriers get injected into the 
gate oxide and get trapped there.

• The damaged oxide change the IV characteristics:
– Reduced current in NMOS
– Increases current in PMOS

• Hot carriers may cause circuit wearout as NMOS 
transistors become too slow.

• Negative bias temperature instability (NBTI) is an 
similar mechanism in PMOS, where holes are 
trapped in oxide.

• Refer: http://www.semiconfareast.com/hotcarriers.htm
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Reliability : Latch-up

•NMOS and PMOS are formed as needed.
•In addition an NPN and an PNP transistor formed
•NPN transistor is formed between n-diffusion of 
NMOS, p-type substrate and n-well.

•Substrate and well provide resistance 
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Reliability : Latch-up

• When parasitic BJT formed by the substrate, 
well, and diffusion turn ON, then latch-up occurs.

• This can lead to a low-resistance path between 
supply and ground.

• With proper process advances and layout 
consideration this can be avoided
– Rsub and Rwell need to be minimized (guard rings)

• SOI processes avoid latch-up as there is no 
parasitic BJT.

• Processes with low voltages are less susceptible 
to latch-up (<0.7V complete immune). 
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Reliability : Over-voltage Failure

• Over-voltage problem due to :
– Electrostatic discharge
– Oxide breakdown
– Punchthrough
– Time dependent dielectric breakdown (TDDB) of gate 

oxide
• Electrostatic discharge (ESD) : static electricity 

entering the IO pad can cause transience
• Punchthrough:  Higher voltages applied between 

source and drain lead to punchthrough  when 
the source/drain depletion regions touch.
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Reliability : Soft Errors
• DRAM occasionally flip value spontaneously. A soft error 

will not damage a system's hardware; the only damage is 
to the data that is being processed. 

• There are two types of soft errors: 
– Chip-level soft error: Occurs when the radioactive 

atoms in the chip's material decay and release alpha 
particles into the chip. The particle can hit a DRAM cell 
and change it state to a different value. 

– System-level soft error: Occurs when the data being 
processed is hit with a noise phenomenon, typically 
when the data is on a data bus. The computer tries to 
interpret the noise as a data bit, which can cause 
errors in addressing or processing program code. The 
bad data bit can even be saved in memory and cause 
problems at a later time. 

• When the corrupt bit is rewritten it is equal likely to 
experience anther error. Source: http://www.webopedia.com/TERM/S/soft_error.html
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Why?

• Why more transistors per IC?
– Smaller transistors
– Larger dice

• Why faster computers?
– Smaller, faster transistors
– Better microarchitecture (more IPC)
– Fewer gate delays per cycle
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Scaling : Trend

• The only constant in VLSI is constant change
• Feature size shrinks by 30% every 2-3 years

– Transistors become cheaper
– Transistors become faster
– Wires do not improve 

(and may get worse)
• Scale factor S

– Typically 
– Technology nodes
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Scaling : Assumptions

• What changes between technology nodes?
• Constant Field Scaling

– All dimensions (x, y, z => W, L, tox)
– Voltage (VDD)
– Doping levels

• Lateral Scaling
– Only gate length L 
– Often done as a quick gate shrink (S = 1.05)
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Scaling : Influence on MOS device
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Scaling : Observations

• Gate capacitance per micron is nearly 
independent of process

• But ON resistance * micron improves with 
process

• Gates get faster with scaling (good)
• Dynamic power goes down with scaling (good)
• Current density goes up with scaling (bad)
• Velocity saturation makes lateral scaling 

unsustainable
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Scaling : Example

• Gate capacitance is typically about 2 fF/µm
• The FO4 inverter delay in the TT corner for a 

process of feature size f (in nm) is about 0.5f ps
• Estimate the ON resistance of a unit (4/2 λ) 

transistor.

• FO4 = 5 τ = 15 RC
• RC = (0.5f) / 15 = (f/30) ps/nm
• If W = 2f, R = 8.33 kΩ

– Unit resistance is roughly independent of f
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Interconnect Scaling : Assumptions

• Wire thickness
– Hold constant vs. reduce in thickness

• Wire length
– Local / scaled interconnect
– Global interconnect

• Die size scaled by Dc ≈ 1.1
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Interconnect Scaling : Influence
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Interconnect Scaling : Influence
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Interconnect Scaling : Observations

• Capacitance per micron is remaining constant
– About 0.2 fF/µm
– Roughly 1/10 of gate capacitance

• Local wires are getting faster
– Not quite tracking transistor improvement
– But not a major problem

• Global wires are getting slower
– No longer possible to cross chip in one cycle
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International Technology Roadmap for 
Semiconductors (ITRS)

• Semiconductor Industry Association forecast
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Scaling Implications

• Improved Performance
• Improved Cost
• Interconnect Woes
• Power Woes
• Productivity Challenges
• Physical Limits
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Scaling Implications : Cost Improvement

• In 2003, $0.01 bought you 100,000 transistors
– Moore’s Law is still going strong

[Moore03]
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Scaling Implications : Interconnect Woes

• SIA made a gloomy forecast in 1997
– Delay would reach minimum at 250 – 180 nm, then 

get worse because of wires
• But…

– Misleading scale
– Global wires

• 100 kgate blocks ok
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Scaling Implications : Reachable Radius

• We can’t send a signal across a large fast chip 
in one cycle anymore

• But the microarchitect can plan around this
– Just as off-chip memory latencies were tolerated

Chip size

Scaling of
reachable radius
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Scaling Implications : Dynamic Power

• Intel VP Patrick Gelsinger (ISSCC 2001)
– If scaling continues at present pace, by 2005, high 

speed processors would have power density of 
nuclear reactor, by 2010, a rocket nozzle, and by 
2015, surface of sun.

– “Business as usual will not work in the future.”
• Intel stock dropped 8%

on the next day
• But attention to power is

increasing

[Moore03]
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Scaling Implications : Static Power

• VDD decreases
– Save dynamic power
– Protect thin gate oxides and short channels
– No point in high value because of velocity sat.

• Vth must decrease to 
maintain device performance

• But this causes exponential 
increase in OFF leakage

• Major future challenge
Static

Dynamic

[Moore03]
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Scaling Implications : Productivity

• Transistor count is increasing faster than 
designer productivity (gates / week)
– Bigger design teams

• Up to 500 for a high-end microprocessor

– More expensive design cost
– Pressure to raise productivity

• Rely on synthesis, IP blocks

– Need for good engineering managers
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Scaling Implications : Physical Limits

• Will Moore’s Law run out of steam?
– Can’t build transistors smaller than an atom…

• Many reasons have been predicted for end of 
scaling
– Dynamic power
– Subthreshold leakage, tunneling
– Short channel effects
– Fabrication costs
– Electromigration
– Interconnect delay

• Rumors of demise have been exaggerated


