e cture 6 : Delay Estimation

CSCI 5330
Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.
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Lecture Outline

 Delay Definitions

« Switch-level RC Delay Models

 Effective Resistance and Capacitance

« Diffusion Capacitance and Layout Effects
* ElImore Delay Model

* Linear Delay Model

 Parasitic Delay

* Logical Efforts
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Delay Definitions

« Combinational logic has two types of delay:
— Propagation
— Contamination
* When the input changes, output retains it old
value for the delay and

take on its new value in at most the propagation
delay.

 The gate that charges or discharges a node is
called driver, and the gates and wires that being
driven are called load.
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i®e1ay Definitions : Prop. Vs Contamination
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 The output remains unchanged for a time period

equal to the contamination delay, t_,

e The new output value is guaranteed to valid after
a time period equal to the propagation delay, t,,
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Delay Definitions : Propagation
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Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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Delay Definitions : Contamination
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Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
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Delay Definitions : Propagation

* t,q,- riSing propagation delay
—Time delay from the reference voltage (Vpp/2) at the

input to the reference voltage at the output, when
output voltage is going from low-to-high.

* {4 falling propagation delay
—Time delay from the reference voltage (Vpp/2) at the
input to the reference voltage at the output, when
output voltage is going from high-to-low.
* t,4: (average) propagation delay (also max-time)
— defined in two ways: (maximum or average of two)
* maximum (toq, to)
’ tpd = (tpdr + tpdf)/ 2
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Delay Definitions : Propagation ...
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elay Definitions : Contamination

* t.4,- rising contamination delay

—From input to rising output crossing Vpp/2
* t.4¢: falling contamination delay

—From input to falling output crossing Vpp/2

* 1.4 @average contamination delay (also min-time)
_tpd = (tcdr + thf)/ 2
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Il Delay Definitions : Contamination ...
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ielay Definitions : Rise and Fall

.. rise time

—From output crossing 0.2 V5 to 0.8 V5
* t;: fall time

—From output crossing 0.8 Vpy to 0.2 V5

* Rise / Fall times are also called slope or edge
rates.

» Edge Rate: t; = (t, + t;)/2
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Delay Definitions : Rise and Fall ....
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Simulated Inverter Delay

« Solving differential equations by hand is too hard

« SPICE simulator solves the equations
numerically

— Uses more accurate -V models too!
 But simulations take time to write
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Delay Estimation

We would like to be able to easily estimate delay
— Not as accurate as simulation
— But easier to ask “What if?”

The step response usually looks like a 15t order RC
response with a decaying exponential.

Use RC delay models to estimate delay
— C = total capacitance on output node

— Use effective resistance R
— So that tg = RC

Characterize transistors by finding their effective R
— Depends on average current as gate switches
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Switch-level RC Delay Models

* RC models treat MOSFETs as switches in series
with resistors.

 Unit effective resistance R can be obtained from
any operating point of |-V characteristics as:

R =1/ (0l / Vy)

* When 0V is small the resistance R can be
obtained by differentiating the | equation:

* NOTE: The above way of calculating resistance
IS not practically accurate as the non-ideal effects
(velocity saturation) have strong impact on it.
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Switch-level RC Delay Models ...

lge (MA)
4007
Vo= 1.8

300+ /9

Slope of a curve
2001 / ol gives conductance,
- iInverse of which is

/ OV resistance.
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Vds
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Switch-level RC Delay Models ...

« Use equivalent circuits for MOS transistors
— ldeal switch + capacitance and ON resistance
— Unit NMOS has resistance R, capacitance C

« Capacitance proportional to width: If unit effective
resistance is R, then the transistor of width k
units has resistance R/k.

» Resistance inversely proportional to width: If C is
the capacitance of a unit transistor, then the
transistor of width k units has capacitance kC.
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RC Delay Models: Inverter

s IKC PMOS equivalent RC model:
« Width of transistor is k units
d T o 2Rk« Both _gate and diffusion
Q#Ek < > QL‘}J T capacitances shown
S

/_—FKC « One terminal is shown
connected to V4 (n-well)

d
d
R/kikc * Width of transistor is k units
d « Both gate and diffusion
o[k «—> g capacitances shown
S $<C e One terminal is shown
. g connected to GND
(substrate)
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RC Delay Models: Inverter ...

IZC
o Estimation of
T T delay of a fanout-
—2C Af-1 i
ﬂ 2y 2 '\)_—rzc of-1 inverter.
A <> v
Pk Q. | NMOS is of 1-unit
RS [, TC  width and PMOS is

4 of 2-unit width to

achieve equal fall /
Equivalent circuit :
1st inverter driving 2nd

rise resistance.
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RC Delay Models: Inverter ...

T 4 =R*(6C) =6RC

-
: R

R
° T L, _ :20 Time constant
> T2C | loc | t=RC
Y -—P
[ Lo Ri —C
Ré l —C < —

Vv

Equivalent circuit :
No switches

Equivalent circuit :
1st inverter driving 2nd
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[Switch-level RC Delay Models: Tx gate

Trans gate effectively works as a
voltage controlled resistance

between input and output.

e A —NMOS 1n linear, PMOS 1n cut-off
« B—NMOS 1n linear, PMOS 1n linear
« C—-NMOS in cut-off, PMOS in linear
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5 witch-level RC Delay Models: Tx gate

Effective

1
1 R 2R

a b a= O—Em a= 1—% resistance of a unit
_2’)_ 4R

or  transmission gate

* R for a MOS is greater in its poor direction.
 NMOS passing ‘1’ — effective resistance is 2R
 PMOS passing ‘0" — effective resistance is 4R
* When a =0 : R, = R parallel with 4R = (4/5)R
* When a=1:Rq =2R parallel with 2R =R
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ffective Resistance and Capacitance

e Parallel and series transistors combine like
conventional resistors.

* When in series: Total resistance is the sum of all

: Total conductance is the sum of
conductance, inverse of which is the total
resistance.

* Resistance is low if they are in parallel.

 Worst case delay - when only one of several
parallel transistors is ON.
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ective R and C : 3-input NAND Example

Question: Sketch a 3-input NAND with transistor
widths chosen to achieve effective rise and fall
resistances equal to a unit inverter (R).

« Each NMOS should have R/3

#EZ HJ{EZ [ resistance
E « Each PMOS should have R
3 resistance (worst case one even
] one ON should provide R
g resistance).
3 « Since 1-unit NMOS has R
% resistance, so its W/L is 3.
 Also 1-unit PMOS has 2R
3-input NAND resistance, so its W/L is 2.
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Mctive R and C : 3-input NAND Capacitance

A= :
S i, |

Question: Annotate the 3-input NAND gate with
gate and diffusion capacitance.

2

4
N}

) rg Y By EDN

<

3-input NAND
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He2? 22 THRL£>
2C 2C 2C

T Recall

e ¢ 2% «Unit NMOS has

3C resistance R, capacitance
=18 v C
v J=3c

3-input NAND

Dept. of Comp. Sc. & Eng.

13 & Unit PMOS has
3C =
N —3C resistance 2R,

vy capacitance C
*k units has capacitance
kC.
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4 tive R and C : 3-input NAND Capacitance

2 ik e
— %V%
ngESC 3 T3C
T+
v v
Shorted capacitances
3-input NAND deleted and
remaining
capacitances lumped.
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Ii@irective R and C : Diffusion Cap Example

* We assumed contacted diffusion on every s/ d.
« Good layout minimizes diffusion area

« Example: NAND3 layout shares 1 diffusion contact
— Two of the PMOS share a single diffusion region
— Reduces output capacitance by 2C

Shared
Contacted
Diffusion Isolated
Contacted #EZ
Merged Diffusion
Uncontacted
Diffusion
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Elmore Delay Model

 ON transistors look like resistors

 Pullup or pulldown network modeled as RC
ladder

« Elmore delay of RC ladder

pd ~ Z Ri—to—sourceCi

nodes |

=RC, +(R,+R,)C,+...+ (R, + R, +...+ Ry )C,

t

R1 R2 R3 RN
AN AN AN AN
— — —_—— (°°° —
C1 C2 C3 CN
% V N\ V
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Example: Estimate rising and falling propagation
delays of a 2-input NAND driving h identical gates.

#Ez 2 % _
%iGC T4hC —j ‘@;

h copies
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Ising and Falling Delay Example

* Rising propagation delay :

-

e
%ifsc $4hc - ‘@;

B 2 X g 2C h copies

%Y toar = (6+4h)RC
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H”{EZ _O%J_ Y

jzi_ic $4hC ::DO ‘@

h copies
v
x R2
R/Zi izc i(6+4h)c " (2C +[ 6—|—4h C:l

:(7+4h)RC
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Two Components of Delay

* Delay has two parts

— Parasitic delay (determined bygate driving its own
diffusion capacitance)
« 60or7RC
* Independent of load

— Effort delay (determined by load capacitance)
« 4h RC
* Proportional to load capacitance
* The capacitance ratio is called the electrical effort
or fanout.
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Linear Delay Model

Express delays in process-independent unit

d — dabs
i
* Delay has two components
d=f+p

Effort delay f = gh (a.k.a. stage effort)

— Again has two components

g: logical effort
— Measures relative ability of gate to deliver current
— g =1 for inverter
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Linear Delay Model ....

 EXxpress delays in process-independent unit

d — dabs
i
* Delay has two components
d=f+p

- Effort delay f = gh (a.k.a. stage effort)

— Again has two components

* h: electrical effort =C_, / C,,
— Ratio of output to input capacitance
— Sometimes called fanout
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Linear Delay Model ....

 EXxpress delays in process-independent unit

d — dabs
i
* Delay has two components
d=Tf+p

e Parasitic delay p
— Represents delay of gate driving no load
— Set by internal parasitic capacitance
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ear Delay Model : Delay Vs Fanout

d =f+p

=ah + 2-input
J P 5 NAND  Inverter
5 g=4/3
> 9 p=2
 Whatabout = d = (4/3)h+2
() 4 —
NOR2? 3
T
=
S 24 EffortDelay:f
Z
1 oo e Y e
Parasitic Delay: p
0 T T T 1
0 1 2 3 4 5
HectricalEffort:
h= Cout / Cin
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Computing Logical Effort

* Definition: Logical effort is the ratio of the input
capacitance of a gate to the input capacitance of
an inverter delivering the same output current.

« Measure from delay vs. fanout plots
 Or estimate by counting transistor widths

L,

B

1

44

2 i[4
Aﬂ Y A 5 —Y

1 B 2 —[1 1

v %

in 3 Cin =4
g=3/3 g=4/3
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|} Catalog of Gates : Logical Effort

 Logical effort of common gates

Gate type Number of inputs

2 3 4 n
Inverter
NAND 4/3 |5/3 6/3 (n+2)/3
NOR 5/3 |7/3 9/3 (2n+1)/3
Tristate / mux 2 2 2 2
XOR, XNOR 4,4 16,12,6 |8, 16,16, 8
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atalog of Gates : Parasitic Delay

» Delay of a gate when it drives zero load.

 Parasitic delay of common gates
— In multiples of p;, (=1)

Gate type Number of inputs

1 |2 3 4 n
Inverter 1
NAND 2 3 4 n
NOR 2 3 4 n
Tristate /mux |2 |4 6 8 2n
XOR, XNOR 4 6 8
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