Lecture 2: Instructions:
Language of the Computers

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNMRSITY | |
NORTH EXAS CSCE 5610: Computer Architecture

¢

Review

Computer Organization & Architecture:

e Computer Architecture = ISA + machine organization
* Processor = Datapath + Controller

 All computers consist of five components:

(1) Datapath (2) Control (3) Memory (4) Input device;
and (5) Output device

Control

Datapatth

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

What are Instructions?

e Language of the Machine

More primitive than higher level languages
e.g., no sophisticated control flow

Very restrictive
e.g., MIPS Arithmetic Instructions

We’'ll be working with the MIPS instruction set architecture

— similar to other architectures developed since the
1980's

— used by NEC, Nintendo, Silicon Graphics, Sony
Design goals:
 maximize performance
* minimize cost
e reduce design time

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Instruction Set Architecture:
} What Must be Specified?

Instruction
Fetch ° Instruction Format or Encoding
1 — how is it decoded?
Instruction :
° Location of operands and result
Decode
| — where other than memory?
Operand — how many explicit operands?
Fetch — how are memory operands located?
v — which can or cannot be in memory?
Execute o :
Data type and Size
Result ° Operations
Store — what are supported
| ° Successor instruction
Next — jumps, conditions, branches
Instruction

gﬁ;}ﬂa e - fetch-decode-execute is implicit!
NORTH-TE%AS CSCE 5610: Computer Architecture

Instruction Categories in MIPS
Processor

 Arithmetic

e Logical

e Data Transfer

« Conditional Branch

e Unconditional Branch

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Design Principles

 [nstruction complexity i1s only one variable

— lower instruction count vs. higher CPI / lower clock
rate

* Design Principles:
— simplicity favors regularity
— smaller Is faster
— make the common case fast
— good design demands compromise

 |nstruction set architecture
— a very important abstraction indeed!

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

MIPS Arithmetic

 All instructions have 3 operands
 Operand order is fixed (destination first)

 Example:
Ccode: A=B+C $50 A
$s1[B |
MIPS code: add $s0, $s1, $s2 —
(associated with variables by c:ompller)a‘g82

Note: (1) “$s0” represents a register

(2) Variables A, B, C are stored In registers
$s0, $s1, and $s2 respectively

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

MIPS Arithmetic

« Design Principle: simplicity favors regularity. Why?
« Of course this complicates some things...

C code: A=B+C+D;
E=F-A:

MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
sub $s4, $s5, $s0

Note: register $t0, $t1 are temporary registers

* Operands must be registers, only 32 registers provided
e Design Principle: smaller is faster. Why?

¢

UNMRSITY

NORTH EX&S CSCE 5610: Computer Architecture

General Purpose Registers (GPRs) Dominate

°1975-1995 all machines use general purpose registers

> Advantages of registers
e registers are faster than memory
e registers are easier for a compiler to use

e registers can hold variables

- memor traffic Is reduced, so ram Is speeded u
smce reglsters are faster %an menP g p p

- code density improves (since register named with fewer bits
than memory location)

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Registers vs. Memory

* In MIPS processor, arithmetic instructions operands must
be registers

* Only 32 registers provided
 Compiler associates variables with registers
« What about programs with lots of variables?
Solution: Spilling Registers
Excessive variables are stored in Memory
and moved from memory to register file
by load and store instructions.

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Stored Program Concept

e |nstructions are bits

 Programs are stored in memory
— to be read or written just like data

Processor Memor
y memory for data, programs,

/ compilers, editors, etc.

 Fetch & Execute Cycle
— Instructions are fetched and put into a special register
— Bits in the register "control" the subsequent actions
— Fetch the “next” instruction and continue

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Memory Organization

 Viewed as a large, single-dimension array, with an
address.

« A memory address Is an index into the array
e "Byte addressing" means that the index points to a byte of

memory.
O | 8bitsof data
1 | 8bitsof data
2 | 8bitsof data
3 | 8bitsof data
4 | 8bits of data
5 | 8bits of data
6 | 8 bitsof data
UNMRSITY of | |
r(NORTH TEXAS CSCE 5610: Computer Architecture

Memory Organization

« Bytes are nice, but most data items use larger "words"
 For MIPS, a word is 32 bits or 4 bytes.

0 | 32 bits of data

4 | 32 bits of data

Registers hold 32 bits of data

8 | 32 bits of data

12 | 32 bits of data

o 232 pytes with byte addresses from 0 to 232-1
o 230 words with byte addresses 0, 4, 8, ... 232-4

 Words are alignhed
l.e., what are the least 2 significant bits of a word
address?

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

¢

Addressing Objects: Endianess

e Big Endian: address of most significant byte
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

e Little Endian:

msb

address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

0 1 2 3

big endian byte O

UNMRSITY
NORTH EXAS

CSCE 5610: Computer Architecture

Isb

Generic Examples of Instruction

Format Widths
Variable:
Fixed:
Hybrid:
r(UNS[?T%S{ITEMS CSCE 5610: Computer Architecture

Summary of Instruction Formats

* |If code size Is most important,
use variable length instructions

e |f performance Is most important,
use fixed length instructions

 Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
Instructions (Thumb, MIPS16); per procedure decide
performance or density

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Load & Store Instructions by Example

 Load and store instructions are used for data movement between
memory and registers in the register file

« Example:
C code: A[8] = h + A[8];
MIPS code: Iw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0# $t0 = h + $tO
sw $t0, 32($s3) # A[8] = $tO

Note: (1) lw = load word, sw = store word
(2) $t0O is a temporary register that accumulates the final result
(3) Reqister $s2 holds variable “h”
(4) Register $s3 is the index register that holds the
start address of the array A l.e the location where array A starts..
« Store word has destination last
« Remember arithmetic operands are registers, not memory!

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Our First Example

o Can we figure out the code?

¢

C Code:

swap(int v[], int k);

{ int temp;
temp = v[K]
v[k] = v[k+1];
v[k+1] = temp;

MIPS Code:
Note: (1) Registers used: $2, $4, $5, $15, $16, $31
(Remember: Only 32 registers in MIPS processor)
(2) muli = multiply immediate instruction
(3) r = jump return instruction
(4) Array v starts at location 0 in the memory
(5) Register $4 = Base address of array v
(6) Register $5 = variable k

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0(%$2)
lw $16, 4($2)
Sw $16, 0($2)
SW $15, 4(%$2)
jr $31
UNSE%S{%S CSCE 5610: Computer Architecture

So far we've learned:

e MIPS
— loading words but addressing bytes
— arithmetic on registers only

e |[nstruction Meaning
add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 — $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Machine Language

e Instructions, like registers and words of data, are also 32 bits long
— Example: add $t0, $s1, $s2
— registers have numbers, t0=8, s1=17, s2=18

* Instruction Format (R-type):

000000 10001 | 10010 | 01000 | 00000 | 100000

op rs rt rd shamt ([funct

op: operation of the instruction

rs: the first register source operand

rt: the second register source operand

shamt: shift amount (we will look at this later..)

funct: function; this field selects the variant of the
operation in the op field

UNIVERSITY, | |
NORTH TEXAS CSCE 5610: Computer Architecture

Machine Language

e Consider the load-word and store-word instructions,
— What would the regularity principle have us do?
— New principle: Good design demands a compromise

* Introduce a new type of instruction format
— |-type for data transfer instructions
— other format was R-type for register

Example: Iw $t0, 32($s2)
35| 18 9 32

op rs rt 16 bit number
Where's the compromise?

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

((

Instructions for Control flow

e Decision making instructions
— alter the control flow,
— 1.e., change the "next" instruction to be executed

e MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0O, $t1, Label

« Example: if (i==))h=i+];

bne $s0, $s1, Label
add $s3, $s0, $s1

UNIVERSITY, _ |
NORTH TEXAS CSCE 5610: Computer Architecture

Unconditional Branch: jump instruction

e MIPS unconditional branch instructions:
] label

e Jump Instruction Format:

op 26 bit address
 Example:

if (i'5)) beq $s4, $s5, Labl
h=i+j; add $s3, $s4, $s5

else | Lab2
h=i-j; _abl: sub $s3, $s4, $s5

_ab2: ...
r(UNS[?T%S{ITEMS CSCE 5610: Computer Architecture

¢

Instruction

So far:

Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 — $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]

sw $51,100($s2) Memory[$s2+100] = $s1
one $s4,$s5,L. Next instr. is at Label if $s4 = $s5
beq $s4,$s5,L Nextinstr. is at Label if $s4 = $s5
] Label Next instr. is at Labe
—ormats:
op rs rt rd shamt| funct
op rs rt 16 bit address
op 26 bit address
UNSI?T%S{ITEMS CSCE 5610: Computer Architecture

Control Flow

 We have: beq, bne, what about Branch-if-less-than?

« New Instruction:
If $s1 < $s2 then

$t0=1
sit $t0, $s1, $s2 else
$t0=0

e Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

* Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Assembly Language vs. Machine
Language

 Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first
 Machine language is the underlying reality
— e.g., destination is no longer first
 Assembly can provide 'pseudoinstructions'
— e.g., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,%$zero”

« When considering performance you should count real
Instructions

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Other Issues

* Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
Interrupts and exceptions
system calls and conventions

e We've focused on architectural issues

— basics of MIPS assembly language and machine
code

— we’ll build a processor to execute these instructions.

UNMRSITY of

NORTH TEXAS CSCE 5610: Computer Architecture

¢

Overview of MIPS

e simple instructions all 32 bits wide
very structured, no unnecessary baggage
only three instruction formats

R op rs rt rd shamt| funct
| op rs rt 16 bit address
J op 26 bit address

rely on compiler to achieve performance
— what are the compiler's goals?

help compiler where we can

[ﬁqm@RﬂTYf | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Addresses in Branches and Jumps

e |nstructions:
bne $t4,$t5,Label, Next instruction is at Label if $t4 1=%$t5
beq $t4,5t5,Label, Next instruction is at Label if $t4 = $tb

| Label Next instruction is at Label
 Formats:
I op rs rt 16 bit address
J op 26 bit address

e Addresses are not 32 bits
— How do we handle this with load and store
Instructions?

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Addresses In Branches

Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4!=%$t5
beq $t4,5t5,Label,Next instruction is at Label if $t4=%$t5

Formats:
I op rs rt 16 bit address

Could specify a register (like lw and sw) and add it to
address

— use Instruction Address Register (PC = program
counter)

— most branches are local (principle of locality)
Jump instructions just use high order bits of PC
— address boundaries of 256 MB

UNIVERSITY, | |
NORTH TEXAS CSCE 5610: Computer Architecture

To summarize:

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, [Fast locations for data. In MIPS, data must be in registers to perform
32 registers |$a0-$a3, $vO-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 memory |Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 [$s1l = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 [|$sl = $s2 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 |[$sl = $s2 + 100 Used to add constants
load word Iw $s1, 100($s2) $s1 = Memory[$S2 + 100]|Word from memory to register
store word sw $sl, 100($s2) Memory[$S2 + 100] = $s1 |Word from register to memory
Data transfer |load byte Ib $s1, 100($s2) $s1 = Memory[$S2 + 100]|Byte from memory to register
store byte Sb_ $s1l, 100($s2) Memory[$S2 + 100] = $s1 |Byte from register to memory
load upper immediate | Iul $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits
branch on equal beq $s1, $s2, 25 if ($s1 == $s2)goto Equal test; PC-relative branch
PC +4 + 100
branch on not equal [bne $sl1, $s2, 25 if ($s1 1= $s2)goto Not equal test; PC-relative
Conditional PC +4+100
branch set on less than st $sl1, $s2, $s3 |[if ($s2 < $s3) $s1=1; Compatre less than; for beq, bne
else $s1 =0
set less than slti $sl1, $s2, 100 |if ($s2 < 100) $sl=1; Compare less than constant
immediate else $s1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register Jjr $ra goto $ra For switch, procedure return
tional jump |jump and link jal 2500 $ra = pPC + 4: go to 10000 |For procedure call
UNI “ERSIT“f CSCE 5610: Computer Architecture
INORTH IEXAS

Addressing Modes

op rs rt Immediate

1. Immediate addressing

2. Register addressing

op rs rt rd C funct Registers

[Register

3. Base addressing

op rs rt Address Memory
|

Register d—)—» Byte Halfword Word
7 L

4. PC-relative addressing

op rs rt Address Memory
l

PC Word

5. Pseudodirect addressing

op Address Memory
L

PC é—» Word
T

UNIVERSITY, | |
NORTH TEXAS CSCE 5610: Computer Architecture

Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:— TA
CALL B
B:| — .| A|B
CALL C
o | — -lAlB|C
RET
p— JA|B
RET
—— ;A

Some machines provide a memory stack as part of the architecture

(e.g., VAX)
Sometimes stacks are implemented via software convention
(e.g., MIPS)
UNIVERSITYf | |
r(NORTH TEXAS CSCE 5610: Computer Architecture

MIPS: Software conventions for Registers

0 constant O 16 sO callee saves
1 reserved for assembler ... (caller can clobber)
2 VvO expression evaluation & 23 s7
3 vl function results 24 t8 temporary (cont’'d)
4 a0 arguments 25 9
5 al 26 reserved for OS kernel
6 a2 27
7/ a3 28 gp Pointerto global area
8 t0 temporary: caller saves 29 sp Stack pointer
(callee can clobber) 30 fp frame pointer
15 t7 31 Return Address (HW)

Plus a 3-deep stack of mode bits.

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Alternative Architectures

« Design alternative:
— provide more powerful operations
— goal Is to reduce number of instructions executed
— danger is a slower cycle time and/or a higher CPI
 Sometimes referred to as “RISC vs. CISC”

— virtually all new instruction sets since 1982 have been
RISC

— VAX: minimize code size, make assembly language
easy Instructions from 1 to 54 bytes long!

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

¢

80x36

1978: The Intel 8086 is announced (16 bit architecture)
1980: The 8087 floating point coprocessor is added

1982: The 80286 increases address space to 24 bits,
+instructions

1985: The 80386 extends to 32 bits, new addressing modes

1989-1995:. The 80486, Pentium, Pentium Pro add a few
Instructions (mostly designed for higher performance)

1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of
compatibility

*adding new features as someone might add clothing to a packed
bag”

“an architecture that is difficult to explain and impossible to love”

Uﬁg}%{%{”gﬁg CSCE 5610: Computer Architecture

A dominant architecture: 80x86

« See your textbook for a more detailed description

« Complexity:
— Instructions from 1 to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up In quantity,
making it beautiful from the right perspective”

UNMRSITY | |
ORTH EX&S CSCE 5610: Computer Architecture

¢

¢

Summary: Salient features of MIPS |

«32-bit fixed format inst (3 formats)

«32 32-bit GPR (RO contains zero) and 32 FP registers (and HI LO)
spartitioned by software convention

«3-address, reg-reg arithmetic instr.

*Single address mode for load/store: base+displacement

—no indirection, scaled
—16-bit immediate plus LUI

«Simple branch conditions
e compare against zero or two registers for =,°
* NO integer condition codes
*Delayed branch
sexecute instruction after the branch (or jump) even if
the branch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

UNMRSITY | |
ORTH EX&S CSCE 5610: Computer Architecture

¢

Summary: Instruction set design ()

Use general purpose registers with a load-store architecture: YES

Provide at least 16 general purpose registers plus separate floating-point
registers: 31 GPR & 32 FPR

Support basic addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred; :
YES: 16 bits for immediate, displacement (disp=0 => reqister deferred)

All addressing modes apply to all data transfer instructions : YES

Use fixed instruction encoding If interested in performance and use
variable instruction encoding if interested in code size : Fixed

Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-bit
and 64-bit IEEE 754 floating point numbers: YES

Support these simple instructions, since they will dominate the number of
Instructions executed: load, store, add, subtract, move register-register,
and, shift, compare equal, compare not equal, branch (with a PC-relative
address at least 8-bits long), jump, call, and return: YES, 16b

Aim for a minimalist instruction set: YES

UNlVH{bllY | |
NORTH E}Q\’Q CSCE 5610: Computer Architecture

Data Types

Bit: 0,1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCIl 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:

2's Complement __exponent

How many +/- #'s?

. . E ; :
Floating Point: XR__ Where is decimal pt?
Single Precision base How are +/- exponents

Double Precision mantissa represented?
Extended Precision

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Compilers and Instruction Set Architectures

e Ease of compilation

° orthogonality: no special registers, few special cases,
all operand modes available with any data type or instruction type

° completeness: support for a wide range of operations
and target applications

° regularity: no overloading for the meanings of instruction fields
° streamlined: resource needs easily determined

* Register Assignment is critical too
° Easier If lots of registers

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Summary of Compiler Considerations

*Provide at least 16 general purpose registers
plus separate floating-point registers,

*Be sure all addressing modes apply to all
data transfer instructions,

Aim for a minimalist instruction set.

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

¢

Summary: Evaluating Instruction Sets?

Design-time metrics:

° Can it be implemented, in how long, at what cost?

° Can it be programmed? Ease of compilation?
Static Metrics:

° How many bytes does the program occupy in memory?
Dynamic Metrics:

° How many instructions are executed?

° How many bytes does the processor fetch to execute the
program? CPI

° How many clocks are required per instruction?

° How "lean" a clock is practical?

Inst. Count Cycle Time
NOTE: this depends on instructions set, processor organization, and _

|Iat|on techniques. ._ _
NORTH EXAS CSCE 5610: Computer Architecture 43 ".f;{‘*:ﬁ"' , '

Architecture Styles..

According to the operand(s) locations..
o Accumulator-style
One of the operands is in an implicit register known as accumulator

» Load-store architecture
Both operands must be in the registers

* Register-memory
One operand in register, the other in Memory

 Memory-Memory
Both operands can be in Memory

» Stack-style
Stack is used to evaluate expressions

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

