
CSCE 5610: Computer Architecture 1

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 2: Instructions:
Language of the Computers

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 5610: Computer Architecture 2

Review

Computer Organization & Architecture:
• Computer Architecture = ISA + machine organization
• Processor = Datapath + Controller
• All computers consist of five components:

(1) Datapath (2) Control (3) Memory (4) Input device;
and (5) Output device

Processor I/O

Control

Datapath
Memory

Input

Output

CSCE 5610: Computer Architecture 3

What are Instructions?
• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions
• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the
1980's

– used by NEC, Nintendo, Silicon Graphics, Sony
Design goals:
• maximize performance
• minimize cost
• reduce design time

CSCE 5610: Computer Architecture 4

Instruction Set Architecture:
What Must be Specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

° Instruction Format or Encoding
– how is it decoded?

° Location of operands and result
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

° Data type and Size
° Operations

– what are supported
° Successor instruction

– jumps, conditions, branches
- fetch-decode-execute is implicit!

CSCE 5610: Computer Architecture 5

Instruction Categories in MIPS
Processor

• Arithmetic

• Logical

• Data Transfer

• Conditional Branch

• Unconditional Branch

CSCE 5610: Computer Architecture 6

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock

rate
• Design Principles:

– simplicity favors regularity
– smaller is faster
– make the common case fast
– good design demands compromise

• Instruction set architecture
– a very important abstraction indeed!

Design Principles

CSCE 5610: Computer Architecture 7

MIPS Arithmetic
• All instructions have 3 operands
• Operand order is fixed (destination first)
• Example:

C code: A= B + C

MIPS code: add $s0, $s1, $s2
(associated with variables by compiler)

Note: (1) “$s0” represents a register
(2) Variables A, B, C are stored in registers

$s0, $s1, and $s2 respectively

$s0

$s2

$s1
A
B
C

:

CSCE 5610: Computer Architecture 8

MIPS Arithmetic
• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

Note: register $t0, $t1 are temporary registers

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

CSCE 5610: Computer Architecture 9

General Purpose Registers (GPRs) Dominate

° 1975-1995 all machines use general purpose registers

° Advantages of registers
• registers are faster than memory
• registers are easier for a compiler to use
• registers can hold variables

- memory traffic is reduced, so program is speeded up
(since registers are faster than memory)

- code density improves (since register named with fewer bits
than memory location)

CSCE 5610: Computer Architecture 10

Registers vs. Memory
• In MIPS processor, arithmetic instructions operands must

be registers
• Only 32 registers provided
• Compiler associates variables with registers
• What about programs with lots of variables?

Solution: Spilling Registers
Excessive variables are stored in Memory
and moved from memory to register file
by load and store instructions.

CSCE 5610: Computer Architecture 11

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory memory for data, programs,
compilers, editors, etc.

Stored Program Concept

CSCE 5610: Computer Architecture 12

Memory Organization
• Viewed as a large, single-dimension array, with an

address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of

memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

CSCE 5610: Computer Architecture 13

Memory Organization
• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word
address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

CSCE 5610: Computer Architecture 14

Addressing Objects: Endianess
• Big Endian: address of most significant byte

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

CSCE 5610: Computer Architecture 15

Generic Examples of Instruction
Format Widths

Variable:

Fixed:

Hybrid:

…
…

CSCE 5610: Computer Architecture 16

Summary of Instruction Formats

• If code size is most important,
use variable length instructions

• If performance is most important,
use fixed length instructions

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb, MIPS16); per procedure decide
performance or density

CSCE 5610: Computer Architecture 17

Load & Store Instructions by Example
• Load and store instructions are used for data movement between

memory and registers in the register file
• Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3) # $t0 = A[8]

add $t0, $s2, $t0# $t0 = h + $t0
sw $t0, 32($s3) # A[8] = $t0

Note: (1) lw = load word, sw = store word
(2) $t0 is a temporary register that accumulates the final result
(3) Register $s2 holds variable “h”
(4) Register $s3 is the index register that holds the

start address of the array A I.e the location where array A starts..
• Store word has destination last
• Remember arithmetic operands are registers, not memory!

CSCE 5610: Computer Architecture 18

Our First Example
• Can we figure out the code?

C Code:
swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}
MIPS Code:
Note: (1) Registers used: $2, $4, $5, $15, $16, $31

(Remember: Only 32 registers in MIPS processor)
(2) muli = multiply immediate instruction
(3) jr = jump return instruction
(4) Array v starts at location 0 in the memory
(5) Register $4 = Base address of array v
(6) Register $5 = variable k

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

CSCE 5610: Computer Architecture 19

So far we’ve learned:
• MIPS

— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

CSCE 5610: Computer Architecture 20

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, t0=8, s1=17, s2=18

• Instruction Format (R-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

op: operation of the instruction
rs: the first register source operand
rt: the second register source operand
shamt: shift amount (we will look at this later..)
funct: function; this field selects the variant of the
operation in the op field

Machine Language

CSCE 5610: Computer Architecture 21

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

Example: lw $t0, 32($s2)
35 18 9 32

op rs rt 16 bit number
• Where's the compromise?

Machine Language

CSCE 5610: Computer Architecture 22

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Instructions for Control flow

CSCE 5610: Computer Architecture 23

• MIPS unconditional branch instructions:
j label

• Jump Instruction Format:

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

Unconditional Branch: jump instruction

op 26 bit address

CSCE 5610: Computer Architecture 24

So far:
• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 != $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:
op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

CSCE 5610: Computer Architecture 25

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

2

Control Flow

CSCE 5610: Computer Architecture 26

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real
instructions

Assembly Language vs. Machine
Language

CSCE 5610: Computer Architecture 27

• Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

• We've focused on architectural issues
– basics of MIPS assembly language and machine

code
– we’ll build a processor to execute these instructions.

Other Issues

CSCE 5610: Computer Architecture 28

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS

CSCE 5610: Computer Architecture 29

• Instructions:
bne $t4,$t5,Label, Next instruction is at Label if $t4 !=$t5
beq $t4,$t5,Label, Next instruction is at Label if $t4 = $t5

j Label Next instruction is at Label
• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store

instructions?

op rs rt 16 bit address

op 26 bit address

I

J

Addresses in Branches and Jumps

CSCE 5610: Computer Architecture 30

• Instructions:
bne $t4,$t5,Label,Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label,Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to
address
– use Instruction Address Register (PC = program

counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

CSCE 5610: Computer Architecture 31

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

CSCE 5610: Computer Architecture 32

B y te H a lfw o r d W o rd

R e g is te rs

M e m o r y

M e m o r y

W o rd

M e m o r y

W o rd

R e g is te r

R e g is te r

1 . Im m e d ia te a d d re s s in g

2 . R e g is te r a d d r e s s in g

3 . B a s e a d d r e s s in g

4 . P C -re la tive a d d re s s in g

5 . P s e u d o d ir e c t a d d r e s s in g

o p rs r t

o p rs r t

o p rs r t

o p

o p

rs r t

A d d r e s s

A d d r e s s

A d d re ss

rd . . . fu n c t

Im m e d ia te

P C

P C

+

+

Addressing Modes

CSCE 5610: Computer Architecture 33

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention
(e.g., MIPS)

CSCE 5610: Computer Architecture 34

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software conventions for Registers
16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

CSCE 5610: Computer Architecture 35

• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”

– virtually all new instruction sets since 1982 have been
RISC

– VAX: minimize code size, make assembly language
easy instructions from 1 to 54 bytes long!

Alternative Architectures

CSCE 5610: Computer Architecture 36

80x86
• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits,

+instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few

instructions (mostly designed for higher performance)
• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of
compatibility
“adding new features as someone might add clothing to a packed
bag”
“an architecture that is difficult to explain and impossible to love”

CSCE 5610: Computer Architecture 37

A dominant architecture: 80x86
• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

CSCE 5610: Computer Architecture 38

Summary: Salient features of MIPS I
•32-bit fixed format inst (3 formats)
•32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

•partitioned by software convention
•3-address, reg-reg arithmetic instr.
•Single address mode for load/store: base+displacement

–no indirection, scaled
–16-bit immediate plus LUI
•Simple branch conditions

• compare against zero or two registers for =,°
• no integer condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if
the branch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

CSCE 5610: Computer Architecture 39

Summary: Instruction set design (MIPS)
• Use general purpose registers with a load-store architecture: YES
• Provide at least 16 general purpose registers plus separate floating-point

registers: 31 GPR & 32 FPR
• Support basic addressing modes: displacement (with an address offset

size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred; :
YES: 16 bits for immediate, displacement (disp=0 => register deferred)

• All addressing modes apply to all data transfer instructions : YES
• Use fixed instruction encoding if interested in performance and use

variable instruction encoding if interested in code size : Fixed
• Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-bit

and 64-bit IEEE 754 floating point numbers: YES
• Support these simple instructions, since they will dominate the number of

instructions executed: load, store, add, subtract, move register-register,
and, shift, compare equal, compare not equal, branch (with a PC-relative
address at least 8-bits long), jump, call, and return: YES, 16b

• Aim for a minimalist instruction set: YES

CSCE 5610: Computer Architecture 40

Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement

Floating Point:
Single Precision
Double Precision
Extended Precision

M x R
E How many +/- #'s?

Where is decimal pt?
How are +/- exponents

represented?

exponent

base
mantissa

CSCE 5610: Computer Architecture 41

Compilers and Instruction Set Architectures

• Ease of compilation
° orthogonality: no special registers, few special cases,

all operand modes available with any data type or instruction type
° completeness: support for a wide range of operations

and target applications
° regularity: no overloading for the meanings of instruction fields
° streamlined: resource needs easily determined

• Register Assignment is critical too
° Easier if lots of registers

CSCE 5610: Computer Architecture 42

Summary of Compiler Considerations

•Provide at least 16 general purpose registers
plus separate floating-point registers,

•Be sure all addressing modes apply to all
data transfer instructions,

•Aim for a minimalist instruction set.

CSCE 5610: Computer Architecture 43

Summary: Evaluating Instruction Sets?
Design-time metrics:

° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?

Static Metrics:
° How many bytes does the program occupy in memory?

Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute the
program?
° How many clocks are required per instruction?
° How "lean" a clock is practical?

Best Metric: Time to execute the program!

NOTE: this depends on instructions set, processor organization, and
compilation techniques.

CPI

Inst. Count Cycle Time

CSCE 5610: Computer Architecture 44

Architecture Styles..
According to the operand(s) locations..

• Accumulator-style
One of the operands is in an implicit register known as accumulator

• Load-store architecture
Both operands must be in the registers

• Register-memory
One operand in register, the other in Memory

• Memory-Memory
Both operands can be in Memory

• Stack-style
Stack is used to evaluate expressions

