
CSCE 5610: Computer Architecture 1

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 3: Arithmetic for
Computers

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 5610: Computer Architecture 2

Arithmetic

• Where we've been:
– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:
– Implementing the Architecture

32

32

32

operation

result

a

b

ALU

CSCE 5610: Computer Architecture 3

• Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal: 0...2n-1

• Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number

• How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers

CSCE 5610: Computer Architecture 4

• Sign One's Two's
Magnitude Complement Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?

Possible Representations

CSCE 5610: Computer Architecture 5

• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS

CSCE 5610: Computer Architecture 6

• Negating a two's complement number: invert all bits and add 1

– remember: “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

– "sign extension" (lbu vs. lb)

Two's Complement Operations

CSCE 5610: Computer Architecture 7

• Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

0111
+ 1010

• Overflow (result too large for finite computer word):
– e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Addition & Subtraction

CSCE 5610: Computer Architecture 8

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

Note: You must verify the above four overflow conditions by
providing specific examples

Detecting Overflow

Operation Operand A Operand B Result
A + B >= 0 >= 0 < 0
A + B < 0 < 0 >=0
A - B >= 0 < 0 < 0
A - B < 0 >= 0 >= 0

CSCE 5610: Computer Architecture 9

• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for possible resumption
– Details based on software system / language

Example: flight control vs. homework assignment

• MIPS instructions:add, addi, sub cause exceptions on
overflow

• Don't always want to detect overflow
— MIPS instructions: addu, addiu, subu

do not cause exceptions on overflow

Effects of Overflow

CSCE 5610: Computer Architecture 10

Logical Operations

• Shift left logical (sll)
Sll $10, $16, 8 # reg $10 = reg $16 << 8 bits

• Shift right logical (srl)
• AND, OR operations (and, andi, or , ori)

op rs rt rd shamt funct

0 0 16 10 8 0

CSCE 5610: Computer Architecture 11

• Let's build an ALU to support the and and or
instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b result

An ALU (arithmetic logic unit)

CSCE 5610: Computer Architecture 12

• Selects one of the inputs to be the output,
based on a control input

• Lets build our ALU using MUXes:

S

C
A
B

0

1

Review: The Multiplexor

note: we call this a 2-input mux
even though it has 3 inputs!

CSCE 5610: Computer Architecture 13

• Not easy to decide the “best” way to build
something
– Don't want too many inputs to a single gate
– Dont want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cinSum

CarryIn

CarryOut

a

b

CSCE 5610: Computer Architecture 14

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut R e su lt31
a3 1

b3 1

R e su lt0

C arryIn

a0

b0

R e su lt1
a1

b1

R e su lt2
a2

b2

O pe ra t io n

A LU 0

C arry In

C arry O u t

A LU 1

C arry In

C arry O u t

A LU 2

C arry In

C arry O u t

A LU 3 1

C arry In

CSCE 5610: Computer Architecture 15

• Two's complement approach: just negate b and
add.

• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

CSCE 5610: Computer Architecture 16

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

CSCE 5610: Computer Architecture 17

Supporting slt for MIPS

Less will be zero for all
bits other than LSB which
will be 0 or 1 coming from
the “set” output of MSB.

CSCE 5610: Computer Architecture 18

Supporting slt and Overflow: 1-bit ALU for MSB

Overflow detection logic at
the most significant bit
(MSB) ALU.

CSCE 5610: Computer Architecture 19

32-bit ALU for MIPS: Using 32 1-bit ALUs

S et
a3 1

0

A LU 0 R esult0

C arryIn

a0

R esult1
a1

0

R esult2
a2

0

O pera tio n

b3 1

b0

b1

b2

R esult31

O ve rflow

B in ve rt

C a rry In

Less

C arryIn

C a rryO u t

A LU 1
Less

C arryIn

C a rryO u t

A LU 2
Less

C arryIn

C a rryO u t

A LU 31
Less

C arryIn

CSCE 5610: Computer Architecture 20

32-bit ALU for MIPS: Using 32 1-bit ALUs

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

• Testing for equality needed for
conditional branch instructions.

• If subtraction results is 0, then
they are equal.

• “Zero” is a 1 when the result is 0!

• “Bnegate” is a single control line
combining CarryIn and Binvert.

CSCE 5610: Computer Architecture 21

ALU Design: Summary
• We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the

gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
• Our primary focus: comprehension, however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication

CSCE 5610: Computer Architecture 22

Disadvantage of Ripple Carry Adder

• The design of the 4-bit ripple carry adder with the usual
method would require a truth table with 512 entries, since
there are nine inputs to the circuit.

• Long circuit delay due to the many gates in the carry path
from the LSB to the MSB.

• The longest path delay through an n-bit ripple carry adder
is 2n+2 gate delays.

• Carry lookahead adder reduces critical path delay, but
there is area penalty involved.

CSCE 5610: Computer Architecture 23

Binary Adders : Full adder
Boolean Functions:

S = X’Y’Z+X’YZ’+XY’Z’+XYZ = (X XOR Y) XOR Z
C = XY+XZ+YZ = XY+Z(X XOR Y)

CSCE 5610: Computer Architecture 24

Binary Ripple Carry adder: 4-bit example
The full adders are connected in cascade, with the carry output from
one full adder connected to the carry input of the next full adder.

Since a 1 carry may appear near the LSB of the adder and yet
propagate through many full adders to the MSB the name ripple
carry adder. An n-bit ripple carry adder requires n full adders.

Input carry: 0110

Augend A: 1011

Addend B: 0011

Sum S: 1110

Output carry: 0011

Input carry

Output carry

CSCE 5610: Computer Architecture 25

Carry Lookahead Adder

• Reduced delay at the price of more complex hardware.
• The design can be obtained by a transformation of the

ripple carry design in which the carry logic over fixed
groups of bits of the adder is reduced to two-level logic.

• Construct a new logic hierarchy separating the parts of
the full adders not involving the carry propagation path
from those containing the path.

• Call the first path of each full adder a partial full adder
(PFA).

CSCE 5610: Computer Architecture 26

Carry Lookahead Adder: PFA model

•Two outputs: P , G from each PFA to the ripple carry pathi i

•One input: Ci, the carry input, from the carry path to each PFA.
•Propagate function: Pi = Ai XOR Bi. When it is equal to 1 an incoming carry is
propagated through the bit position from Ci, to Ci+1; when equal to zero, carry
propagation is blocked.
•Generate function: Gi = Ai*Bi . Whenever equal to 1 regardless of the Pi value,
the carry output from the position is 1, so a carry has been generated in the
position. When equal to zero, no carry is generated, so that Ci+1 is 0 if the carry
propagated through the position from Ci is also zero.

CSCE 5610: Computer Architecture 27

Carry Lookahead Adder: PFA model

Ripple Carry Path

Carry Lookahead circuit
will replace the ripple
carry path above.

4-bit ripple carry adder
has delay of 10 gate
delays, for carry
lookahead it is 6 gate
delays. Assume XOR has
2 OR gate delays.

CSCE 5610: Computer Architecture 28

• Can’t build a 16 bit adder this
way... (too big)

• Could use ripple carry of 4-bit
CLA adders

• Better: use the CLA principle
again!

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0�
b0�
a1�
b1�
a2�
b2�
a3�
b3

a4�
b4�
a5�
b5�
a6�
b6�
a7�
b7

a8�
b8�
a9�
b9�

a10�
b10�
a11�
b11

a12�
b12�
a13�
b13�
a14�
b14�
a15�
b15

Carry-lookahead unit

CSCE 5610: Computer Architecture 29

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Negative numbers: convert and multiply

– there are better techniques.

Binary Multiplication

CSCE 5610: Computer Architecture 30

Binary Multiplication

• Example:
Multiplicand: 1011
Multiplier: x 101

1011
0000

1011__
Product: 110111

• Observation : The multiplier bits are always 1 or 0, therefore the
partial products are equal to either the multiplicand or to 0.

• The above fact has been exploited in various ways, and many time
and hardware efficient multiplication algorithms have been
developed.

• Booth’s multiplier and Wallace-Tree multiplier are two examples.

CSCE 5610: Computer Architecture 31

Binary Multipliers: A 2-bit example

Product A0 and B0
is 1 if both are 1,
else it is 0. Thus,
the product is
same as AND
operation.

CSCE 5610: Computer Architecture 32

Binary Multipliers: A 4-bit by 3-bit example

For J multiplier bits
and K multiplicand
bits, we need JxK
AND gates and (J-1)
K-bit adders to
produce a product
of J+K bits.

CSCE 5610: Computer Architecture 33

Multiplication Implementation: v1

Done

1. Test�
M ultip lier0

1a. Add m ultip licand to product and�
place the result in Product register

2. Shift the M ultip licand register le ft 1 b it

3. Shift the M ultip lier reg ister right 1 bit

32nd repetition?

Start

M ultip lier0 = 0M ultip lier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

CSCE 5610: Computer Architecture 34

Multiplication Implementation: v2

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test D o n e

1 . T e s t�
M u ltip lie r0

1 a . A d d m u ltip l ic a n d to th e le ft h a lf o f�
th e p ro d u c t a n d p la c e th e re su lt in �
th e le ft h a lf o f th e P ro d u c t re g is te r

2 . S h if t th e P ro d u c t re g is te r r ig h t 1 b it

3 . S h ift th e M u ltip l ie r re g is te r r ig h t 1 b i t

3 2 n d re p e titio n ?

S ta rt

M u ltip lie r0 = 0M u ltip lie r0 = 1

N o : < 3 2 re p e titio n s

Y e s : 3 2 r e p e titio n s

CSCE 5610: Computer Architecture 35

Multiplication Implementation: v3

Control�
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

D one

1 . Tes t�
P roduct0

1a. Add m u ltip licand to the le ft ha lf of�
the p roduct and place the resu lt in�
the le ft ha lf of the P roduct register

2 . Sh ift the P roduct reg is te r righ t 1 bit

32nd repe tition?

S tart

P roduct0 = 0P roduct0 = 1

N o : < 32 repetitions

Yes: 32 repetitions

CSCE 5610: Computer Architecture 36

Fast Multiplication Hardware: Unrolls the Loop

• Rather than using a single 32-bit
adder 32 times, this hardware
“unrolls the loop” to use 32 adders.

• Each adder produces a 32-bit sum
and a carry out.

• 1st input: multiplicand ANDed
with a multiplier bit.

• The LSB bit is a bit of the product.

• The carry out and the upper 31bits
of the sum are passed along the
next adder as 2nd input.

CSCE 5610: Computer Architecture 37

Multiplication: MIPS Instructions

• A pair of 32-bit registers Hi and Lo available for
64-bit product.

• Two instructions: mult and multu
• Both instructions ignore overflow.
• Pseudo-instructions mflo mfhi are used to place

products into registers.

CSCE 5610: Computer Architecture 38

Division Implementation: v1

CSCE 5610: Computer Architecture 39

Division Implementation: v2

NOTE: We can not use 32 adders as we did in
multiplier case to speed up as we need to know the
sign of difference each time to perform the next step.

CSCE 5610: Computer Architecture 40

Division: MIPS Instructions

• The pair of 32-bit registers Hi and Lo are used.
• Two instructions: div and divu
• Hi contains the remainder and Lo contains the

quotient after the divide instruction is complete.
• Pseudo-instructions mflo mfhi are used to place

results into registers.

CSCE 5610: Computer Architecture 41

Floating Point (a brief look)
• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., 0.000000001

– very large numbers, e.g., 3.15576 E 109

• Representation:

– sign, exponent, significand: (–1)sign X significant X 2exponent

– more bits for significand gives more accuracy

– more bits for exponent increases range

• IEEE 754 floating point standard:

– single precision: 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

CSCE 5610: Computer Architecture 42

IEEE 754 floating-point standard
• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier (as only positive
numbers are to be dealt with)
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (–1)sign X (1+fraction) X 2exponent – bias

• Example:

– decimal: -0.75 = -3/4 = -3/22

– binary: -0.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110

– IEEE single precision: 10111111010000000000000000000000

CSCE 5610: Computer Architecture 43

Floating Point Complexities
• Operations are somewhat more complicated

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities
• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

CSCE 5610: Computer Architecture 44

Floating Point Addition

CSCE 5610: Computer Architecture 45

Floating Point Multiplication

CSCE 5610: Computer Architecture 46

Floating-Point Instruction in MIPS

• Addition: add.s (single) and add.d
• Subtraction: sub.s and sub.d
• Multiplication: mul.s and mul.d
• Division: div.s and div.d

CSCE 5610: Computer Architecture 47

Summary
• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do

exist
– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit
patterns

• Performance and accuracy are important so there are
many complexities in real machines (i.e., algorithms
and implementation).

• We are ready to move on (and implement the processor)

	CSCE5610 Computer System Architecture�CSCE4610 Computer Architecture
	Arithmetic
	Numbers
	Possible Representations
	MIPS
	Two's Complement Operations
	Addition & Subtraction
	Detecting Overflow
	Effects of Overflow
	Logical Operations
	An ALU (arithmetic logic unit)
	Review: The Multiplexor
	Different Implementations
	Building a 32 bit ALU
	What about subtraction (a – b) ?
	Tailoring the ALU to the MIPS
	Supporting slt for MIPS
	Supporting slt and Overflow: 1-bit ALU for MSB
	32-bit ALU for MIPS: Using 32 1-bit ALUs
	32-bit ALU for MIPS: Using 32 1-bit ALUs
	ALU Design: Summary
	Disadvantage of Ripple Carry Adder
	Binary Adders : Full adder
	Binary Ripple Carry adder: 4-bit example
	Carry Lookahead Adder
	Carry Lookahead Adder: PFA model
	Carry Lookahead Adder: PFA model
	Use principle to build bigger adders
	Binary Multiplication
	Binary Multiplication
	Binary Multipliers: A 2-bit example
	Binary Multipliers: A 4-bit by 3-bit example
	Multiplication Implementation: v1
	Multiplication Implementation: v2
	Multiplication Implementation: v3
	Fast Multiplication Hardware: Unrolls the Loop
	Multiplication: MIPS Instructions
	Division Implementation: v1
	Division Implementation: v2
	Division: MIPS Instructions
	Floating Point (a brief look)
	IEEE 754 floating-point standard
	Floating Point Complexities
	Floating Point Addition
	Floating Point Multiplication
	Floating-Point Instruction in MIPS
	Summary

