Lecture 3: Arithmetic for
Computers

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNIVERSITY,r | |
NORTH TEXAS CSCE 5610: Computer Architecture



Arithmetic

 Where we've been:
— Performance (seconds, cycles, instructions)

— Abstractions:
Instruction Set Architecture
Assembly Language and Machine Language

 What's up ahead:
— Implementing the Architecture

a 32
/ result
’ 32

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

operation

(€



(€

Numbers

Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 01100111 1000 1001...
decimal: 0...2"-1

Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number

How do we represent negative numbers?
l.e., which bit patterns will represent which numbers?

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture




Possible Representations

. Sign One's Two's
Magnitude Complement Complement
000 =+0 000 =+0 000 =+0
001 =+1 001 =+1 001 =+1
010 = +2 010 = +2 010 = +2
011 =+3 011 =+3 011 =+3
100 =-0 100 = -3 100 =-4
101 =-1 101 =-2 101 =-3
110 =-2 110=-1 110 =-2
111 =-3 111 =-0 111 =-1

e Issues: balance, number of zeros, ease of operations
 Which one is best? Why?

(€

UNIVERSIW
NORTH EXAS

CSCE 5610: Computer Architecture



MIPS

o 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000,,, = O
0000 0000 0000 0000 0000 0000 0000 0001,,, = + 1.,
0000 0000 0000 0000 0000 0000 0000 0010,,, =+ 2

two ten

0111111111711 1211171111111 11117 1110
0111111111711 171171 17121111711 111171 1111
1000 0000 0000 0000 0000 0000 0000 0000
1000 0000 0000 0000 0000 0000 0000 0001
1000 0000 0000 0000 0000 0000 0000 0010

+2,147,483,646,, maxint
+ 2,147,483,647 5

— 2,147,483,648ten minint
—2,147,483,647

—2,147,483,646

two
two
two

two ten

two ten

11111111 1111111111711 11171 1111 1101

=-3
two ten

1111 1111 1111 1111 1111 1111 1111 1110, = — 2.,

11111111 1111 1111 1111 1111 1111 1111, =—1

two ten

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Two's Complement Operations

 Negating a two's complement number: invert all bits and add 1
— remember: “negate” and “invert” are quite different!
o Converting n bit numbers into numbers with more than n bits:
— MIPS 16 bit immediate gets converted to 32 bits for arithmetic

— copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

— "sign extension" (Ibu vs. Ib)

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Addition & Subtraction

e Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 - 0110 - 0101

« Two's complement operations easy

— subtraction using addition of negative numbers
0111
+ 1010

 Overflow (result too large for finite computer word):
— e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
__ 1000 it does not mean a carry “overflowed”
r( UNSE%S—II%YEXAS CSCE 5610: Computer Architecture




Detecting Overflow

* No overflow when adding a positive and a negative number
* No overflow when signs are the same for subtraction
e Overflow occurs when the value affects the sign:
— overflow when adding two positives yields a negative
— or, adding two negatives gives a positive
— or, subtract a negative from a positive and get a negative
— or, subtract a positive from a negative and get a positive

(€

Operation | Operand A | Operand B Result
A+B >=0 >=0 <0
A+B <0 <0 >=0
A-B >=( <0 <0
A -B <0 >=0 >=0

Note: You must verify the above four overflow conditions by

providing specific examples

UNIVERSITY,r
ORTI—ITEXAS

CSCE 5610: Computer Architecture




Effects of Overflow

* An exception (interrupt) occurs
— Control jumps to predefined address for exception
— Interrupted address is saved for possible resumption
— Detalls based on software system / language
Example: flight control vs. homework assignment

 MIPS instructions:add, addi, sub cause exceptions on
overflow

 Don't always want to detect overflow
— MIPS instructions: addu, addiu, subu

do not cause exceptions on overflow

UNIVERSIW
NORTH EXAS

(€

CSCE 5610: Computer Architecture



Logical Operations

 Shift left logical (sll)
Sl $10, $16, 8 #reg $10 =reg $16 << 8 hits

op rs rt rd shamt funct

0 0 16 10 8 0

« Shift right logical (srl)
« AND, OR operations (and, andi, or , ori)

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€



An ALU (arithmetic logic unit)

e Let's build an ALU to support the and and or
Instructions
— we'll just build a 1 bit ALU, and use 32 of them

operation

b '

|, result

op

a

b

result

e Possible Implementation (sum-of-products):

(€

UNIVERSIW
NORTH EXAS

CSCE 5610: Computer Architecture




Review: The Multiplexor

o Selects one of the Inputs to be the output,
based on a control input

S

l

A_°, note: we call this a 2-input mux
., C even though it has 3 inputs!

B—

e Lets build our ALU using MUXes:

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Different Implementations

e Not easy to decide the “best” way to build
something

— Don't want too many inputs to a single gate
— Dont want to have to go through too many gates
— for our purposes, ease of comprehension is important

e Let's look at a 1-bit ALU for addition:

a Coutzab_'_acin_|-bCin
b sum sum = a Xor b xor c;,
b —|
CarrlyOt
UNIVERSIW | |
r( NORTH EXAS CSCE 5610: Computer Architecture




Building a 32 bit ALU

Carryln Operation

4

Operation !
Carmvi a0 —| Carryln
ryn » ResultO
b0 ALUO
CarryOut
. — l ©
a_ m I
0 al —| Carryln
_J > Resultl
b1 ALU1
‘__} CarryOut
1 ¢
 GEns Result |
Li a2 —»| Carryln
> Result2
b2 ALU2
> CarryOut
+ 2 l
b——— \_/ .

l A 4
a31 —| Carryln

\
CarryOut
ALU31 Result31

b31 —»

v

UNIVERSITY,f | _
ORTI—ITEXAS CSCE 5610: Computer Architecture

(@



What about subtraction (a—b) ?

 Two's complement approach: just negate b and
add. Binvert Operation

Car
« How do we negate? Mnl
a ¢ >ﬂ (O-\
)
* A very clever solution: *_’j 1
—>, » Result
; i
b— 0 " + 2
S \_/
\/
Car
r( UNSE%S—IHEXAS CSCE 5610: Computer Architecture Y4




Tailoring the ALU to the MIPS

* Need to support the set-on-less-than instruction (slt)
— remember: slt is an arithmetic instruction
— produces a 1 if rs < rt and O otherwise

— use subtraction: (a-b) <0 impliesa<b

* Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0 impliesa=>b

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€



(€

Supporting slt for MIPS

Birnved Dperation
Carryin |
N
a & .-_“\l .
o
——
) oy
4____
b 0 1+ z
1
Less K
R
1. Caé;ﬂm
UNIVERSITY,r
ORTI—ITEXAS

CSCE 5610: Computer Architecture

= Fesut

L_ess will be zero for all
bits other than LSB which
will be 0 or 1 coming from
the “set” output of MSB.




Supporting slt and Overflow: 1-bit ALU for MSB

Binwert O peration
Caren J
I
a Orf
Lo
. Dl_- ey  Resu Overflow detection logic at
7 + 2 ) o _
g@ T T the most significant bit
- (MSB) ALU.
’i
—= et
f&ﬁ&"ﬂ?ﬂ = Qverfioy
UNIVERSIW _ _
r( NORTH EXAS CSCE 5610: Computer Architecture




32-bit ALU for MIPS: Using 32 1-bit ALUs

Binvert Carryln Operation

{ l 4

a0 —»| Carryln

b0 —»| ALUO
Less

CarryOut

A 4

Result0

A\

vV Vv v
al —| Carryln
bl —»| ALU1
0 —| Less
CarryOut

\ 4

Resultl

v Vv v
a2 —»| Carryln
b2 —»| ALU2
0 —»| Less
CarryOut

v

Result2

i lCarryIn |
A\ 4 A 4

a3l —»| Carryln
b31 —»| ALU31 Set
0 —»| Less

Result31

A 4

\

Overflow

UNIVERSITY,f _ _
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



32-bit ALU for MIPS: Using 32 1-bit ALUs

Bnegate Operation

. « “Bnegate” is a single control line
20— Canyin| reqiio

H0—s) AL — combining Carryln and Binvert.

al—>* Canyin Resuit1
b1—» ALUL *

> L

00— Less T—>
CamyQu 7 00— Zero

—,

o] Ao ez | « Testing for equality needed for
0 1= conditional branch instructions.

! e |f subtraction results is 0O, then
; : they are equal.

e “Zero” Is a 1 when the result is O!

a3l —»| M’n Resut3l [
b3l —| ALU3L Set
0 Lless > Overflon
UNIVERSITY, | |
r( NORTI—ITEXAS CSCE 5610: Computer Architecture




ALU Design: Summary

 We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
* Important points about hardware
— all of the gates are always working

— the speed of a gate is affected by the number of inputs to the
gate

— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
e Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

— we’ll look at two examples for addition and multiplication

UNIVERSITY, |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Disadvantage of Ripple Carry Adder

e The design of the 4-bit ripple carry adder with the usual
method would require a truth table with 512 entries, since
there are nine inputs to the circuit.

« Long circuit delay due to the many gates in the carry path
from the LSB to the MSB.

 The longest path delay through an n-bit ripple carry adder
IS 2n+2 gate delays.

 Carry lookahead adder reduces critical path delay, but
there is area penalty involved.

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€



Binary Adders : Full adder
Boolean Functions:
S=XYZ+X’YZ'+XY’Z'+XYZ = (X XOR Y) XOR Z
C=XY+XZ+YZ = XY+Z(X XORY)

Inputs Cutput

X Y i C s . .
N AT,
0 0 0 0 0 Y )!] / 1 S
o0 0 1 0 1 ’ L
] 1 0 0 1
] 1 1 1 0
1 0 0 0 1 C
1 0 1 1 0
1 1 0 1 0 i
1 1 1 1 1 Logic Diagram of Full Adder
Truth Table of Full Adder
UNIVERSIW :
CSCE 5610: Computer Architecture
r( NORTH TEXAS P




Binary Ripple Carry adder: 4-bit example

The full adders are connected in cascade, with the carry output from
one full adder connected to the carry input of the next full adder.

Since a 1 carry may appear near the LSB of the adder and yet
propagate through many full adders to the MSB - the name ripple
carry adder. An n-bit ripple carry adder requires n full adders.

Ba  Ap B2 Az B, A Bo Ao Input carry: 0110

l o l l o l l . l l | Augend A: 1011

T T T T " AddendB: 0011

Co S 52 St S Sum S: 1110

Fig. 3-28 4-Bit Ripple Carry Adder

\ . Output carry: 0011

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Carry Lookahead Adder

 Reduced delay at the price of more complex hardware.

 The design can be obtained by a transformation of the
ripple carry design in which the carry logic over fixed
groups of bits of the adder is reduced to two-level logic.

e Construct a new logic hierarchy separating the parts of
the full adders not involving the carry propagation path
from those containing the path.

e Call the first path of each full adder a partial full adder
(PFA).

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€



(€

Carry Lookahead Adder PFA model

__________________________________________________________

*Two outputs: P;, G; from each PFA to the ripple carry path
*One input: C;, the carry input, from the carry path to each PFA.

*Propagate function: P,= A, XOR B,. When it is equal to 1 an incoming carry is
propagated through the bit posmon from C,, to C,,,; when equal to zero, carry
propagation is blocked.

*Generate function: G;= A;*B;. Whenever equal to 1 regardless of the P, value,
the carry output from the posmon IS 1, so a carry has been generated in the
position. When equal to zero, no carry is generated, so that C,_, is O if the carry
propagated through the position from C, is also zero.

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture



Carry Lookahead Adder: PFA model

________________________

[ L1 L1 |
L) PSS Y IS Y P S W
Ripple Carry Path
= Carry Lookahead circuit
i . will replace the ripple
. carry path above.
4-bit ripple carry adder
i . has delay of 10 gate
i . delays, for carry
§ . lookahead it is 6 gate
o | i delays. Assume XOR has

2 OR gate delays.
Development of a Carry Lookahead Adder
r( UNSE%S—II%YEXAS CSCE 5610: Computer Architecture




(€

Use principle to build bigger adders

Carryln

» Result0--3

Carry-lookahead uni

e Can't build a 16 bit adder this

» Result4--7

way... (too big)

e Could use ripple carry of 4-bit
CLA adders

» Result8--11 ° Better use the CLA prInC|p|e
again!

v
a03—>| Carryln
bOF—
all+——
blEd—>
a2y AVOl
a3+—
b3 —»
c1 | .
l— ci+1
a4[3—»| Carryln
b4 F—>
aSE—
b5EF—>
ALU1
a6 [+—» P1 > pl +1
b6 EF— G1 »|gi+1
a’+—»
b7 —
c2 | .
l— ci+2
a8[3—»| Carryln
b8 EF—
a9+—»
bOE—>| Al U2
alod— P2 »| pi+ 2
b10G—» G2 > gi+ 2
alll—»
bll —» c3 _
ﬁ ci+3
al23—| Carryin
b124—
al3—
al4+—— U|§3 » pi+ 3
bl144—» G3 > gi+ 3
als54+—» C4 44
bl5 —» 17 Cl
CarryOut
UNIVERSITY,r
NORTH TEXAS

» Resultl2--15

CSCE 5610: Computer Architecture



Binary Multiplication

 More complicated than addition
— accomplished via shifting and addition
 More time and more area
* Negative numbers: convert and multiply
— there are better techniques.

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€



Binary Multiplication

 Example:
Multiplicand: 1011
Multiplier: x 101
1011
0000
1011
Product: 110111

 Observation : The multiplier bits are always 1 or O, therefore the
partial products are equal to either the multiplicand or to O.

 The above fact has been exploited in various ways, and many time
and hardware efficient multiplication algorithms have been
developed.

* Booth’s multiplier and Wallace-Tree multiplier are two examples.

(€

UNIVERSITY,r . :
ORTI—ITEXAS CSCE 5610: Computer Architecture 30



Binary Multipliers: A 2-bit example

}511 ﬂ'q;. ||3'1 E|!'EI
AB, AR,
AB, AB, k) LJ Product A, and B,
C; C Gy G A - . IS 1 If both are 1,
1 0

| | else it iIs 0. Thus,

the product s
same as AND

N operation.
Il
CyCy o5 C,

A 2-Bit by 2-Bit Binary Multiplier

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Binary Multipliers: A 4-bit by 3-bit example

Ay

| For J multiplier bits
wal and K multiplicand
o s bits, we need JxK
LU AND gates and (J-1)
T K-bit adders to
AL AT D produce a product
of J+K bits.
T T T

A 4-Bit by 3-Bit Binary Multiplier

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Multiplication Implementation: v1

<

Multiplicand

Shift left

Multiplier0 = 1

v

Co

«

Y

Multiplierd = 0

1. Testd
MultiplierO

la. Add multiplicand to product and
place the result in Product register

A v

64 bits

V

Vi

64-bit ALU /

v

(€

—

Multiplier
Shift right

A 4 A 4

2. Shift the Multiplicand register left 1 bit

v

3. Shift the Multiplier register right 1 bit

32 bits

A

No: < 32 repetitions

32nd repetition?

Product ’\‘7 Yes: 32 titi
Wnte Control test es repetitions
64 hits C Done )
UNIVERSITY,r . :
ORTI—ITEXAS CSCE 5610: Computer Architecture 33




Multiplication

Mufiplicand

32 bits

Implementation: v2

C D

v

Multiplier0 = 1 1. TestO Multiplier0 = 0
Multiplier0

la. Add multiplicand to the left half ofO
the product and place the result ind
the left half of the Product register

2. Shiftthe Product register right 1 bit

v

3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

(oo )

(€

v —_—
N / Multiplier
ShtAL/ Shift right |+
32 bits
v e
Shift right [«—
AL White [« @
64 bits
UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture




Multiplication Implementation: v3

Multiplicand

32 bits

v

N~ L

=D

b 4

1. Tkmoducto =0

ProductO

Product0 =1

A4

la. Add multiplicand to the left half of
the product and place the result inO
the left half of the Product register

v v

2. Shift the Product register right 1 bit

32-bit ALU

(€

No: < 32 repetitions

32nd repetition?

Control

Yes: 32 repetitions
test

v _—
Shift right
Product Write
64 bits
UNIVERSITY,r
ORTI—ITEXAS

CSCE 5610: Computer Architecture

(oo )




Fast Multiplication Hardware: Unrolls the Loop

Mplier1 « Meand  Mpliard » Meand

\ ==t e Rather than using a single 32-bit
.7/  adder 32 times, this hardware

""““l“"“ﬂ,,.,s::_ “unrolls the loop” to use 32 adders.
v
m_m\ = Each adder produces a 32-bit sum
I and a carry out.
v
\—‘:/ e 15t Input: multiplicand ANDed
with a multiplier bit.

e The LSB bit Is a bit of the product.
l VJ{ e The carry out and the upper 31bits
of the sum are passed along the

Y e B next adder as 2" input.

UNIVERSITY,f | |
i, : t
NORTH TEXAS CSCE 5610: Computer Architecture



Multiplication: MIPS Instructions

e A pair of 32-bit registers Hi and Lo available for
64-bit product.

e Two Instructions: mult and multu
« Both instructions ignore overflow.

* Pseudo-instructions mflo mfhi are used to place
products Into registers.

UNIVERSIW
NORTH EXAS

(€

CSCE 5610: Computer Architecture



Division Implementation: v1

¥
1. Subiract the Divisor regisier bom tha
Ramninder register aad place Iha
result in the Remalnder regisser
. l
mm ru_n_ g HEI'I'EJI'IIhr I'ﬂ HEllTIEH'lthri:ﬂ'
ls-n:is
i e 1
v Cuatint 2a. Shift the Duwotlent register totha Iofl, | | 2b. Fessare the original valisa by adding
Ea-hit ALLY Sk bt satsing tha naw rightmoss bit %o 1 thi Divisor regissar o tha Aemainder
ragistor and place tha sum in the
a2 hils Aemaingar ragistar. Also shift tha
- Quotiand ragistar 1o the lofl, sefling tha
Remnaindes MD— naw least significar b 1o 8
Wirihe jest I
f4 bils s
L i ¥
3. S the Divisar register right 1 b1 |
< - Mo; < 33 repedfions
Yez: 33 repetions
UNIVERSITY,r CSCE 5610 C -
: Computer Architecture
I( NORTH TEXAS P




Division Implementation: v2

| Digtac |

_I, lszu-ts.

NOTE:. We can not use 32 adders as we did in
multiplier case to speed up as we need to know the
sign of difference each time to perform the next step.

UNIVERSIW | |
NORTH EXAS CSCE 5610: Computer Architecture

(€




Division: MIPS Instructions

e The pair of 32-bit registers Hi and Lo are used.
e Two Instructions: div and divu

 Hi contains the remainder and Lo contains the
guotient after the divide instruction is complete.

e Pseudo-instructions mflo mfhi are used to place
results into registers.

UNIVERSIW
NORTH EXAS

(€

CSCE 5610: Computer Architecture



Floating Point (a brief look)

 We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., 0.000000001
— very large numbers, e.g., 3.15576 E 10°
* Representation:
— sign, exponent, significand: (=1)s'9" X significant X 2&xponent
— more bits for significand gives more accuracy
— more bits for exponent increases range
 |EEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand
— double precision: 11 bit exponent, 52 bit significand

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



IEEE 754 floating-point standard

e Leading “1” bit of significand is implicit

 Exponentis “biased” to make sorting easier (as only positive
numbers are to be dealt with)

— all Os is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
— summary: (-1)si9" X (1+fraction) X 2exponent—bias

 Example:

— decimal: -0.75 =-3/4 = -3/22
— binary: -0.11=-1.1x 21
— floating point: exponent =126 =01111110

— |EEE single precision: 10111111010000000000000000000000

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



Floating Point Complexities

Operations are somewhat more complicated

In addition to overflow we can have “underflow”

Accuracy can be a big problem
— |IEEE 754 keeps two extra bits, guard and round
— four rounding modes
— positive divided by zero yields “infinity”
— zero divide by zero yields “not a number”

— other complexities

Implementing the standard can be tricky

Not using the standard can be even worse

— see text for description of 80x86 and Pentium bug!

UNIVERSIW | | 4
NORTH EXAS CSCE 5610: Computer Architecture 43 =

(€



Floating Point Addition
G

T
1. Compara the expanents of the two numbsars. |El-nl1|EmrrI| Fracticn | |ﬂm|Emrn| Fracticn
Shift the smaller nurmibes ta B ght until ils [

expanran wauld mateh he lger exponen
 J
Compare
L Sl ALLY ariln
2. Add the significands I
. Exponent
1y diffaranc: T
3. Kamaiza the sum, either shifting rght and Ty L T T
incrementing the sxpanant or shifiing aft ':_‘w"—| {0 13 —=(0 1)
and decremanting the exparant o s ¥
\ﬁ Snitt emaller
,\h Lar 'nlf/_ |-|5hn1rlqh'l rumies right

L ]
(o 17 —={ 0 1
4. Round the signiicand to the appropriate B é

— ol I_—_LI
ncrem ar
- et »| Shitt lan or righ ——

MNa | Rounding hm] Round
T Y

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

I



Floating Point Multiplication
Com )

1
1. Add the bizsed sxponants of 1ha two
nismksars, subtracing the blas fram the sum
o ged the new blased exponent

| 2. Mtialy the sipniicans |

3. Kormalze the product if necessary. shifing
Eright and incremanting the axpanant

5. Sal the skn of the product to pasive if the

sgns of fie original oparands ara the same;
# thay dfiar make tha sign negative
Com
UNIVERSITY, | |
r( ORTI—ITEXAS CSCE 5610: Computer Architecture




Floating-Point Instruction in MIPS

e Addition: add.s (single) and add.d
e Subtraction: sub.s and sub.d

e Multiplication: mul.s and mul.d

e Division: div.s and div.d

UNIVERSIW
NORTH EXAS

(€

CSCE 5610: Computer Architecture



Summary

« Computer arithmetic is constrained by limited precision

e Bit patterns have no inherent meaning but standards do
exist

— two’s complement
— |EEE 754 floating point

« Computer instructions determine “meaning” of the bit

patterns
 Performance and accuracy are important so there are
many complexities in real machines (i.e., algorithms

and implementation).
 We are ready to move on (and implement the processor)

UNIVERSITY,f | |
ORTI—ITEXAS CSCE 5610: Computer Architecture

(€



	CSCE5610 Computer System Architecture�CSCE4610 Computer Architecture
	Arithmetic
	Numbers
	Possible Representations
	MIPS
	Two's Complement Operations
	Addition & Subtraction
	Detecting Overflow
	Effects of Overflow
	Logical Operations
	An ALU (arithmetic logic unit)
	Review:  The Multiplexor
	Different Implementations
	Building a 32 bit ALU
	What about subtraction  (a – b)  ?
	Tailoring the ALU to the MIPS
	Supporting slt for MIPS
	Supporting slt and Overflow: 1-bit ALU for MSB 
	32-bit ALU for MIPS: Using 32 1-bit ALUs
	32-bit ALU for MIPS: Using 32 1-bit ALUs
	ALU Design: Summary
	Disadvantage of Ripple Carry Adder
	Binary Adders : Full adder
	Binary Ripple Carry adder: 4-bit example
	Carry Lookahead Adder
	Carry Lookahead Adder: PFA model
	Carry Lookahead Adder: PFA model
	Use principle to build bigger adders
	Binary Multiplication
	Binary Multiplication
	Binary Multipliers: A 2-bit example
	Binary Multipliers: A 4-bit by 3-bit example 
	Multiplication  Implementation: v1
	Multiplication  Implementation: v2
	Multiplication  Implementation: v3
	Fast Multiplication Hardware: Unrolls the Loop
	Multiplication: MIPS Instructions
	Division  Implementation: v1
	Division  Implementation: v2
	Division: MIPS Instructions
	Floating Point  (a brief look)
	IEEE 754 floating-point standard
	Floating Point Complexities
	Floating Point Addition
	Floating Point Multiplication
	Floating-Point Instruction in MIPS
	Summary

