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CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 3: Arithmetic for 
Computers

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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Arithmetic

• Where we've been:
– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:
– Implementing the Architecture

32

32

32

operation

result

a

b

ALU
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• Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal:  0...2n-1

• Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number

• How do we  represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers
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• Sign One's Two's                 
Magnitude              Complement        Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues:  balance, number of zeros, ease of operations
• Which one is best?  Why? 

Possible Representations
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• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS
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• Negating a two's complement number:  invert all bits and add 1

– remember:  “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
0010  -> 0000 0010
1010  -> 1111 1010

– "sign extension"   (lbu vs.  lb)

Two's Complement Operations
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• Just like in grade school  (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

0111
+ 1010

• Overflow  (result too large for finite computer word):
– e.g.,  adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Addition & Subtraction



CSCE 5610: Computer Architecture 8

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative 
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

Note: You must verify the above four overflow conditions by 
providing specific examples

Detecting Overflow

Operation Operand A Operand B Result
A + B >= 0 >= 0 < 0
A + B < 0 < 0 >=0
A - B >= 0 < 0 < 0
A  - B < 0 >= 0 >= 0
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• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for possible resumption
– Details based on software system / language

Example:  flight control vs. homework assignment

• MIPS instructions:add, addi, sub cause exceptions on 
overflow

• Don't always want to detect overflow
— MIPS instructions:  addu, addiu, subu

do not cause exceptions on overflow

Effects of Overflow
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Logical Operations

• Shift left logical  (sll)
Sll $10,  $16,  8 # reg $10 = reg $16   << 8 bits

• Shift right logical (srl)
• AND, OR operations (and, andi, or , ori)

op rs rt rd shamt funct

0 0           16        10          8            0
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• Let's build an ALU to support the and and or
instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b result

An ALU (arithmetic logic unit)
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• Selects one of the  inputs to be the output, 
based on a control input

• Lets build our ALU using MUXes:

S

C
A
B

0

1

Review:  The Multiplexor

note: we call this a 2-input mux
even though it has 3 inputs!
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• Not easy to decide the “best” way to build 
something
– Don't want too many inputs to a single gate
– Dont want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cinSum

CarryIn

CarryOut

a

b
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Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut R e su lt31
a3 1

b3 1

R e su lt0

C arryIn

a0

b0

R e su lt1
a1

b1

R e su lt2
a2

b2

O pe ra t io n

A LU 0

C arry In

C arry O u t

A LU 1

C arry In

C arry O u t

A LU 2

C arry In

C arry O u t

A LU 3 1

C arry In
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• Two's complement approach:  just negate b and 
add.

• How do we negate?

• A very clever solution:

What about subtraction  (a – b)  ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b
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• Need to support the set-on-less-than instruction (slt)

– remember:  slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction:  (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction:  (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS
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Supporting slt for MIPS

Less will be zero for all 
bits other than LSB which 
will be 0 or 1 coming from 
the “set” output of MSB.
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Supporting slt and Overflow: 1-bit ALU for MSB 

Overflow detection logic at 
the most significant bit 
(MSB) ALU.
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32-bit ALU for MIPS: Using 32 1-bit ALUs

S et
a3 1

0

A LU 0 R esult0

C arryIn

a0

R esult1
a1

0

R esult2
a2

0

O pera tio n

b3 1

b0

b1

b2

R esult31

O ve rflow

B in ve rt

C a rry In

Less

C arryIn

C a rryO u t

A LU 1
Less

C arryIn

C a rryO u t

A LU 2
Less

C arryIn

C a rryO u t

A LU 31
Less

C arryIn
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32-bit ALU for MIPS: Using 32 1-bit ALUs

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

• Testing for equality needed for 
conditional branch instructions. 

• If subtraction results is 0, then 
they are equal.

• “Zero” is a 1 when the result is 0!

• “Bnegate” is a single control line 
combining CarryIn and Binvert.
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ALU Design: Summary
• We can build an ALU to support the MIPS instruction set

– key idea:  use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the 

gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
• Our primary focus:  comprehension,  however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication
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Disadvantage of Ripple Carry Adder

• The design of the 4-bit ripple carry adder with the usual 
method would require a truth table with 512 entries, since 
there are nine inputs to the circuit.

• Long circuit delay due to the many gates in the carry path 
from the LSB to the MSB.

• The longest path delay through an n-bit ripple carry adder 
is 2n+2 gate delays.

• Carry lookahead adder reduces critical path delay, but 
there is area penalty involved.
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Binary Adders : Full adder
Boolean Functions:

S = X’Y’Z+X’YZ’+XY’Z’+XYZ = (X XOR Y) XOR Z
C = XY+XZ+YZ = XY+Z(X XOR Y)
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Binary Ripple Carry adder: 4-bit example
The full adders are connected in cascade, with the carry output from 
one full adder connected to the carry input of the next full adder. 

Since a 1 carry may appear near the LSB of the adder and yet 
propagate through many full adders to the MSB the name ripple 
carry adder. An n-bit ripple carry adder requires n full adders.

Input carry: 0110

Augend A: 1011

Addend B: 0011

Sum S: 1110

Output carry: 0011

Input carry

Output carry
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Carry Lookahead Adder

• Reduced delay at the price of more complex hardware.
• The design can be obtained by a transformation of the 

ripple carry design in which the carry logic over fixed 
groups of bits of the adder is reduced to two-level logic.

• Construct a new logic hierarchy separating the parts of 
the full adders not involving the carry propagation path 
from those containing the path.

• Call the first path of each full adder a partial full adder
(PFA).
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Carry Lookahead Adder: PFA model

•Two outputs: P , G from each PFA to the ripple carry pathi i

•One input: Ci, the carry input, from the carry path to each PFA. 
•Propagate function: Pi = Ai XOR Bi. When it is equal to 1 an incoming carry is 
propagated through the bit position from Ci, to Ci+1; when equal to zero, carry 
propagation is blocked.
•Generate function: Gi = Ai*Bi . Whenever equal to 1 regardless of the Pi value, 
the carry output from the position is 1, so a carry has been generated in the 
position. When  equal to zero, no carry is generated, so that Ci+1 is 0 if the carry 
propagated through the position from Ci is also zero.
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Carry Lookahead Adder: PFA model

Ripple Carry Path

Carry Lookahead circuit 
will replace the ripple 
carry path above.

4-bit ripple carry adder 
has delay of 10 gate 
delays, for carry 
lookahead it is 6 gate 
delays. Assume XOR has 
2 OR gate delays.
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• Can’t build a 16 bit adder this 
way... (too big)

• Could use ripple carry of 4-bit 
CLA adders

• Better:  use the CLA principle 
again! 

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0�
b0�
a1�
b1�
a2�
b2�
a3�
b3

a4�
b4�
a5�
b5�
a6�
b6�
a7�
b7

a8�
b8�
a9�
b9�

a10�
b10�
a11�
b11

a12�
b12�
a13�
b13�
a14�
b14�
a15�
b15

Carry-lookahead unit
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• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Negative numbers:  convert and multiply

– there are better techniques.

Binary Multiplication
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Binary Multiplication

• Example:
Multiplicand: 1011
Multiplier: x   101

1011
0000

1011__   
Product:                 110111

• Observation : The multiplier bits are always 1 or 0, therefore the 
partial products are equal to either the multiplicand or to 0.

• The above fact has been exploited in various ways, and many time
and hardware efficient multiplication algorithms have been 
developed.

• Booth’s multiplier and Wallace-Tree multiplier are two examples.
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Binary Multipliers: A 2-bit example

Product A0 and B0
is 1 if both are 1, 
else it is 0. Thus, 
the product is 
same as AND 
operation.
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Binary Multipliers: A 4-bit by 3-bit example 

For J multiplier bits 
and K multiplicand 
bits, we need JxK
AND gates and (J-1) 
K-bit adders to 
produce  a product 
of J+K bits.
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Multiplication  Implementation: v1

Done

1. Test�
M ultip lier0

1a. Add m ultip licand to product and�
place the result in  Product register

2. Shift the  M ultip licand register le ft 1  b it

3. Shift the  M ultip lier reg ister right 1  bit

32nd repetition?

Start

M ultip lier0 =  0M ultip lier0 =  1

No:  <  32 repetitions

Yes:  32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits
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Multiplication  Implementation: v2

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test D o n e

1 . T e s t�
M u ltip lie r0

1 a .  A d d  m u ltip l ic a n d  to  th e  le ft h a lf o f�
th e  p ro d u c t  a n d  p la c e  th e  re su lt  in �
th e  le ft h a lf o f th e  P ro d u c t re g is te r

2 . S h if t th e  P ro d u c t re g is te r r ig h t 1  b it

3 .  S h ift th e  M u ltip l ie r  re g is te r r ig h t 1  b i t

3 2 n d  re p e titio n ?

S ta rt

M u ltip lie r0  =  0M u ltip lie r0  =  1

N o :  <  3 2  re p e titio n s

Y e s :   3 2  r e p e titio n s
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Multiplication  Implementation: v3

Control�
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

D one

1 . Tes t�
P roduct0

1a. Add  m u ltip licand to the  le ft ha lf of�
the p roduct and place the  resu lt in�
the  le ft ha lf of the  P roduct register

2 . Sh ift the P roduct reg is te r righ t 1  bit

32nd  repe tition?

S tart

P roduct0 = 0P roduct0 =  1

N o :  <  32 repetitions

Yes:  32 repetitions
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Fast Multiplication Hardware: Unrolls the Loop

• Rather than using a single 32-bit 
adder 32 times, this hardware 
“unrolls the loop” to use 32 adders.

• Each adder produces a 32-bit sum 
and a carry out.

• 1st input: multiplicand ANDed
with a multiplier bit.

• The LSB bit is a bit of the product.

• The carry out and the upper 31bits 
of the sum are passed along the 
next adder as 2nd input.
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Multiplication: MIPS Instructions

• A pair of 32-bit registers Hi and Lo available for 
64-bit product.

• Two instructions: mult and multu
• Both instructions ignore overflow.
• Pseudo-instructions mflo mfhi are used to place 

products into registers. 
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Division  Implementation: v1
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Division  Implementation: v2

NOTE: We can not use 32 adders as we did in 
multiplier case to speed up as we need to know the 
sign of difference each time to perform the next step.
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Division: MIPS Instructions

• The pair of 32-bit registers Hi and Lo are used.
• Two instructions: div and divu
• Hi contains the remainder and Lo contains the 

quotient after the divide instruction is complete.
• Pseudo-instructions mflo mfhi are used to place 

results into registers.
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Floating Point  (a brief look)
• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., 0.000000001

– very large numbers, e.g., 3.15576 E 109

• Representation:

– sign, exponent, significand:    (–1)sign X significant  X 2exponent  

– more bits for significand gives more accuracy

– more bits for exponent increases range

• IEEE 754 floating point standard:  

– single precision:  8 bit exponent, 23 bit significand

– double precision:  11 bit exponent, 52 bit significand
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IEEE 754 floating-point standard
• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier (as only positive 
numbers are to be dealt with)
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary:   (–1)sign X (1+fraction) X 2exponent – bias

• Example:

– decimal:  -0.75 = -3/4 = -3/22

– binary:  -0.11 = -1.1 x 2-1

– floating point:  exponent = 126 = 01111110

– IEEE single precision:  10111111010000000000000000000000
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Floating Point Complexities
• Operations are somewhat more complicated

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities
• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!
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Floating Point Addition
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Floating Point Multiplication
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Floating-Point Instruction in MIPS

• Addition: add.s (single) and add.d
• Subtraction: sub.s and sub.d
• Multiplication: mul.s and mul.d
• Division: div.s and div.d
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Summary
• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do 

exist
– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of  the bit 
patterns

• Performance and accuracy are important so there are 
many complexities in real machines (i.e., algorithms 
and implementation).

• We are ready to move on (and implement the processor)
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