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CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 6: Pipelining

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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The Big Picture: Where are We Now? 
• We know five classic components of a computer.
• We understand how the instruction set plays a key role in determining 

the performance, the design complexity of the datapath and controller.
• We designed a processor comprising of datapath and controller for a 

small set of instructions.
• Datapath:

– Single-cycle implementation  - Too slow
– Multi-cycle implementation – Large instructions take longer time, 

small instructions take shorter time
• Controller: Approach I:  FSM Based Approach

– Structured approach to derive a circuit implementation from FSM 
specification

– Implementation styles: (1) Random-logic (2) PLA (3) ROM 
Approach 2: Microprogramming

– Control written as a program using microinstructions
– Flexible but slower
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Pipelining is Natural!
Laundry Example

• Ann, Brian, Cathy, Dave each 
have one load of clothes 
to wash, dry, and fold.

• Washing takes 30 minutes.

• Drying takes 30 minutes.

• Folding takes 30 minutes.

• Putting-away takes 30 minutes
to put clothes into drawers.

A B C D
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Sequential Laundry

• Sequential laundry takes 8 hours for 4 loads.
• If they learned pipelining, how long would  laundry take? 
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Pipelined Laundry: Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads! 
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Pipelining Lessons

• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload.

• Multiple tasks operating 
simultaneously using different 
resources.

• Potential speedup = Number 
pipeline stages.

• Pipeline rate limited by slowest 
pipeline stage.

• Unbalanced lengths of pipe stages 
reduces speedup.

• Time to “fill” pipeline and time to 
“drain” it reduces speedup.

• Stall for dependences.
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MIPS case: The Five Stages of Load

• Ifetch: Instruction Fetch
–Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WBLoad
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Conventional Pipelined Execution 
Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time
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Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 2Cycle 1

Improves performance 
by increasing instruction 
throughput.
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Single Cycle Vs Pipelining
Solve Example page-372 Interface book

Instruction
fetch Reg ALU Data

access Reg

800 psns Instruction
fetch Reg ALU Data

access Reg

800ps ns Instruction
fetch

800 psns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 psns Instruction
fetch Reg ALU Data

access Reg

200psns Instruction
fetch Reg ALU Data

access Reg

200 psns 200 psns 200 psns 200 psns 200 psns

Program
execution
order
(in instructions)

Ideal speedup is number of stages in the pipeline.  Do we achieve this?

Overall execution time = 3x800ps = 2400ps.

Overall execution time 
= 3x200ps = 600ps.

Speedup 
= 2400/600 = 4.

Solve Example page-A10 of Quantitative book.
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Pipelining – What makes it easy/hard?

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards:   suppose we had only one memory
– data hazards:  an instruction depends on a previous instruction
– control hazards:  need to worry about branch instructions

• We’ll build a simple pipeline and look at these issues.
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Pipelining the Datapath: Basic Idea

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back
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Pipelined Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

r u
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

64-bit 64-bit97-bit128-bit

• Follow Fig. 12 (page-389) to Fig. 14 (page-391)  to understand pipelined 
execution of lw instruction. Others instructions will be similar.
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Corrected Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

• For load instruction, register number is needed in the last stage, thus same 
needs to be passed along in order to be preserved.
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Graphically Representing Pipelines

• Pipeline can be thought of as a series of datapaths shifted 
in time.

• The above graphics can help in answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

I M R e g D M R e g

I M R e g D M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T im e ( i n c lo c k c y c l e s )

l w $ 1 0 , 2 0 ( $ 1 )

P r o g r a m

e x e c u t io n

o r d e r

( i n in s t r u c t i o n s )

s u b $ 1 1 , $ 2 , $ 3

A L U

A L U
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Pipeline Control

PC

Ins truction
m em ory

Address

In
st

r u
ct

i o
n

Ins truction
[20– 16]

M em toR eg

A LU O p

B ranch

R e gD s t

A LU Src

4

16 32
Instruction
[15– 0]

0

0
R egiste rs

W rite
re gister

W rite
da ta

R ea d
da ta 1

R ea d
da ta 2

R ead
re gister 1

R ead
re gister 2

Sign
extend

M
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1
W rite

data

Read

data M
u
x

1

A L U
co n t ro l

R e g W ri te

M em Read

Instruction
[15– 11]

6

IF /ID ID /EX E X/M E M M E M /W B

M em W rite

A ddress

Data
m em ory

P CS rc

Z ero

A dd
A d d

res u lt

S h if t

le ft 2

A L U
re su lt

A L U

Z e ro

A dd

0

1

M
u
x

0

1

M
u
x
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• We have 5 stages.  What needs to be controlled 
in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

Pipeline Control
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• Pass control signals along just like the data.
Pipeline Control

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

stage control 
lines

Instruction
Reg 
Dst

ALU 
Op1

ALU 
Op0

ALU 
Src Branch

Mem 
Read

Mem 
Write

Reg 
write

Mem to 
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction
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Datapath with Control

PC

Instruction
memory

In
st

ru
ct

i o
n

Add

Instruction
[20–16]

M
em

to
R

e g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
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x
1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2R
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W
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e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0
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Address
Data

memory

Address
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Major Hurdles of Pipelining
• Pipeline Hazards 

– Dictionary meaning of hazard: “a source of danger”
– structural hazards: attempt to use the same resource two 

different ways at the same time
• e.g., combined washer/dryer would be a structural hazard  

– data hazards: attempt to use item before it is ready
• Instruction depends on result of prior instruction still in the pipeline

– control hazards: attempt to make a decision before 
condition is evaluated

• Branch instructions

• One Solution: Wait until dependencies are resolved
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards
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Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

• One memory port generates conflict whenever memory reference occurs.
• Detection is easy in this case! (right half highlight means read, left half write).
• Solutions: Stall the pipeline or use split cache.

NOTE: Refer Fig A.4 page-A-14 of Quantitative book for more details.

Conflict!
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Performance of Pipeline with Stalls

• Speed up from pipelining = 
sPipelinedClockcycle

dUnpipelineClockCycle
edCPIpipelin

inedCPIunpipel
×

sPipelinedClockCycle
dUnpipelineClockCycle

ionerInstructallCyclesPPipelineSt
×

+1
1

• Speed up from pipelining = 

• Speed up from pipelining = 

pthPipelineDe
ionerInstructallCyclesPPipelineSt

×
+1

1

Solve Example page-A13 of Quantitative book.
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Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11
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• Dependencies backwards in time are hazards.
Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

NOTE: Refer Fig A.6 page-A-16 of Quantitative book for more details.
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• “Forward” result from one stage to another.
• “or” OK if define read/write properly.

Data Hazard Solution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

NOTE: Refer Fig A.7 page-A-18 of Quantitative book for more details.
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• Can’t solve with forwarding: 
• Must delay/stall instruction dependent on load.
• A hardware called “pipeline interlock” detects hazard and stalls.

Forwarding (or Bypassing): 
What about Loads?

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

NOTE: Refer Fig A.9 page-A-20 of Quantitative book for more details.
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Forwarding Unit

• Need to detect a hazard and then forward the proper value to resolve 
the hazard.

• When an instruction tried to read a register in its EX stage that an 
earlier instruction intends to write in its WB stage, then we need the 
values as inputs to the ALU.

• Notation: “ID/EX.RegisterRs”

Name of the pipeline register name of the field in ID/EX register
• Two pairs of hazard conditions:

1a.    EX/MEM.RegisterRd = ID/EX.RegisterRs
1b.    EX/MEM.RegisterRd = ID/EX.RegisterRt
2a.    MEM/WB.RegisterRd = ID/EX.RegisterRs
2b.    MEM/WB.RegisterRd = ID/EX.RegisterRd
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Hardware with Forwarding Unit 

P C
In s t r u c t io n
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R e g is t e rs
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C o n tro l

A L U

E X

M

W B

M

W B

W B

ID /E X

E X /M E M

M E M / W B

D a ta

m e m o r y

M

u

x

F o r w a r d in g

u n it

IF / ID

In
s

tr
u

c
t i

o
n

M

u

x
R d

E X /M E M .R e g is te rR d

M E M /W B .R e g is te rR d

R t

R t

R s

IF /I D . R e g is te r R d

IF /I D . R e g is te r R t

IF /I D . R e g is te r R t

IF /I D . R e g is te r R s
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Dependence Detection: An Example

IM R e g

IM R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e ( i n c lo c k c y c le s )

s u b $ 2 , $ 1 , $ 3

P r o g r a m

e x e c u t io n

o r d e r

( in i n s t r u c t io n s )

a n d $ 1 2 , $ 2 , $ 5

IM R e g D M R e g

IM D M R e g

IM D M R e g

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 /– 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ( $ 2 )

V a lu e o f

r e g is te r $ 2 :

D M R e g

R e g

R e g

R e g

D M
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Data Hazard Detection by Forwarding Unit 

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• The first hazard is on register $2, between the result of 
sub $2, $1, $3 and the first read operand of   and $12, $2, $5.

• This hazard is of type 1a;  can be detected by observing that
EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

sub

and

Or
:

A
L

UMem Reg Mem

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Reg

IF ID EX WRMEM
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Refining Hazard Detection Conditions

• Some instructions do not write registers, therefore the following 
conditions are inaccurate => some times data is forward unnecessarily.

• Two Pairs of hazard conditions:
1a.    EX/MEM.RegisterRd = ID/EX.RegisterRs
1b.    EX/MEM.RegisterRd = ID/EX.RegisterRt
2a.    MEM/WB.RegisterRd = ID/EX.RegisterRs
2b.    MEM/WB.RegisterRd = ID/EX.RegisterRd

• Solution: check whether the RegWrite signal is active or not
i.e., by checking WB field in EX and MEM stages will be enough
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How to forward the data?

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data
memory

M
u
x

Forwarding
unit

EX/MEM

b. With forwarding

ForwardB

Rd EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt
Rt
Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data
memory

EX/MEM

a. No forwarding

Registers

M
u
x

ExplanationSour
ce

Mux
Control

The second ALU operand is 
forwarded from data 
memory or an earlier ALU 
result.

MEM/
WB

Forward
B = 01

The second ALU operand is 
forwarded from the prior 
ALU result.

EX/M
EM

Forward
B = 10

The second ALU operand 
comes from the register file.

ID/EXForward
B = 00

The first ALU operand is 
forwarded from data 
memory or an earlier ALU 
result

MEM/
WB

Forward
A = 01

The first ALU operand is 
forwarded from the prior 
ALU result.

EX/M
EM

Forward
A = 10

The first ALU operand 
comes from the register file.

ID/EXForward
A = 00

Assumption: Only instructions 
we need to forward are the 
four R-type instructions: add, 
sub, and, and or.

NOTE: Rt is one field, but shown twice.
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Data Forwarding Unit – Final conditions
• EX hazard:

If (EX/MEM.RegWrite
and (EX/MEM. RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

If (EX/MEM.RegWrite
And (EX/MEM. RegisterRd != 0)
And (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

• MEM hazard:
If (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

If (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

add $1, $1, $2;
add $1, $1, $3;
add $1, $1, $4;

:
:
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Hardware with Forwarding Unit 
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R d

E X /M E M .R e g is te rR d

M E M /W B .R e g is te rR d

R t

R t

R s

IF /I D . R e g is te r R d

IF /I D . R e g is te r R t

IF /I D . R e g is te r R t

IF /I D . R e g is te r R s
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• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that 

writes to the same register.

Can't always forward

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

• Thus, we need a hazard detection unit to “stall” the load 
instruction.
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Hazard Detection Unit 

• When forwarding unit fails to resolve, the hazard then we need to 
resort to a hazard detection unit.

• Operates during ID stage so that it can insert the stall between load 
and the instruction that immediately uses the load results.

• Thus the hazard detection unit checks for the load instructions:
If ( ID/EX. MemRead -- checks to see if it’s a load
and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline

-- check if the destination register of 
the load matches either source 

register of the instruction in the ID stage.
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Hazard Detection Unit
• Stall by letting an instruction that won’t write anything go forward.

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

0

M
u
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
r it

e

PC
W

rit
e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd
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Stall Insertion

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

• Since the dependencies go forward in time, there are no 
data hazards!
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• Have compiler guarantee no hazards.
• Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem:  this really slows us down!

Another Solution: A Software Solution
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Branch / Control Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

• Control hazards are also known as branch hazards.
• Numbers to the instruction are addresses of the instructions.
• Branch instruction decides only in MEM stage (CC4).

72=40+4+7*4 
(PC-relative)
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• Stall: wait until decision is clear
– Its possible to move up decision to 2nd stage by 

adding hardware to check registers as being read.

Control Hazards – Solution I (Stall) 
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UMem Reg Mem Reg
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UMem Reg Mem Reg

A
L

UReg Mem RegMem

• Impact: 2 clock cycles per branch instruction  => slow
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• Branch stalling is too slow.
• Assume that the branch will not be taken and thus continue 

execution down the sequential instruction stream.
• If branch is taken, 

– The instructions that are being fetched and decoded must be discarded.  
– Execution must continue at the target.

• If branches are not taken half the time, and if it costs little to 
discard the instructions, then this solution halves the cost of 
control hazards!

• To discard instructions, we change the original control values to 
0s (Just as in Branch Stall case)

• But there is more it: we need to flush instructions in IF, ID, and 
EX stages of the pipeline!

Control Hazards - Solution II 
(Branch Prediction)
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• Predict: guess one direction then back up if wrong
– Predict not taken

Control Hazards - Solution II 
(Branch Prediction)
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Load
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L
UMem Reg Mem Reg

A
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UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Impact: 1 clock cycles per branch instruction if right, 2 if wrong (right - 50% of time)
More dynamic scheme: history of 1 branch (- 90%)
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Flushing Instructions
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• Redefine branch behavior (takes place after next 
instruction) “delayed branch”.

Control Hazards – Solution III 
(Delayed Branch)
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Load Mem

A
L
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• Impact: 0 clock cycles per branch instruction if we can find instruction to 
put in “slot” (50% of time).

• As launching more instruction per clock cycle, less useful.
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Scheduling the branch delay slot
a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6
add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

add $s1, $s2, $s3

Before 
scheduling

After 
scheduling

Execute the delay slot 
instructions whether or 
not branch is taken.

NOTE: Refer Fig A.14 page-A-24 of Quantitative book for more details.
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Performance of Pipeline with Branch Schemes

sromBrancheallCyclesFPipelineSt
pthPipelineDe

+1

• Speed up from pipelining = 

• Speed up from pipelining = 

ltyBranchPenauencyBranchFreq
pthPipelineDe

×+1

Solve Example page-A25 of Quantitative book.
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Dynamic Branch Prediction
• Assuming always that a branch is not taken is known as static 

branch prediction.  We can do better than this!
• Main Idea:

• Look up the address of the instruction to see if a branch was taken the 
last time this instruction was executed.

• If so, begin fetching new instructions from the same place as the last 
time!

• Need: branch prediction buffer or branch history table

• Branch prediction buffer (1-bit prediction scheme)
• It is a small memory indexed by the lower portion of the address of the 

branch instruction.
• The memory contains a bit that says whether the branch was recently 

taken or not.
• This may not work all the time! 
• If the prediction is false, then prediction bit is inverted and stored back.
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2-bit Prediction Scheme
• 1-bit prediction scheme:

• The bit indexed to may not be the right bit  i.e., the indexed bit may 
have been written by a branch instruction whose lower bits match with 
this branch instruction.

• Even if a branch is almost always taken, we will likely predict 
incorrectly twice, rather than once, when it is not taken!
Example: Consider a loop branch that branches nine times in a row, 
then is not taken once.  What is the prediction accuracy for this 
branch, assuming the prediction bit for this branch remains in the 
prediction buffer?

• 2-bit Prediction Scheme: A branch that strongly favors
taken or not taken (typical behavior)
will be mispredicted only once.  The two
bits are used to encode the four states 
of the system.

T a k e n

T a k e n

T a k e n

T a k e n

N o t t a k e n

N o t t a k e n

N o t ta k e n

N o t t a k e n

P r e d i c t t a k e n P r e d ic t t a k e n

P r e d ic t n o t t a k e n P r e d ic t n o t t a k e n



CSCE 5610: Computer Architecture 50

Dynamic Scheduling

• The hardware performs the “scheduling”
– hardware tries to find instructions to execute
– out of order execution is possible
– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– DEC Alpha 21264:  9 stage pipeline, 6 instruction 

issue
– PowerPC and Pentium:  branch history table
– Compiler technology important
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Pipelining – Fallacies & Pitfalls
• Pipelining is easy. 
• Pipelining ideas can be implemented independent of technology.
• Failure to consider instruction set design can adversely impact pipelining

• Widely variable instruction lengths and running times can lead to 
imbalance among pipeline stages; complicate hazard detection.

• Sophisticated addressing modes.
• Increasing the depth of pipelining always increases performance (see the 

table below from S.R. Kunkel & J.E. Smith, “Optimal pipelining in super 
computers,” in Proc 13th Symp. On Computer Architecture (June 1986), 
pages 404-414.)
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Pipelining Summary

• Pipelining doesn’t help latency of single task, it helps throughput of 
entire workload.

• Multiple tasks operating simultaneously using different resources.
• Potential speedup = Number pipe stages.
• Pipeline rate limited by slowest pipeline stage.
• Unbalanced lengths of pipe stages reduces speedup.
• Time to “fill” pipeline and time to “drain” it reduces speedup.
• Three types of pipeline hazards: structural, data, and control/branch
• Stalling helps any kind of hazard.
• Data hazard solutions: Stalling, Data forwarding, and Hazard detection
• Control or Branch Hazard solutions: Stalling, Delayed Branching, and 

Branch Prediction.


