Lecture 6: Device Theory

CSCE 5730 Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

Outline of the Lecture

- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary effects
- Future trends

Mostly occurring as parasitic element in Digital ICs

Depletion Region

NOTE: Solve Example 3.1, page-76, Rabaey book.

Diode Current

$$I_D = I_S \left(e^{V_D / \phi_T} - 1 \right)$$

Diode Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

NOTE: Solve Example 3.2, page-80, Rabaey book.

Diode: Secondary Effects

Avalanche Breakdown

Diode : SPICE Model

What is a Transistor?

The MOS Transistor

Some Facts about MOS Transistor

- MOS is a majority carrier device in which the current in a conducting channel between source and drain is controlled by voltage applied to the gate.
- Majority carriers: NMOS-electron and PMOS-hole
- When ON, the MOS transistor passes a finite amount of current in channel.
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor's gate, source, drain have capacitance
- Different symbols for NMOS/PMOS:

MOS Transistors -Types and Symbols

NMOS Enhancement NMOS Depletion

PMOS Enhancement

NMOS with Bulk Contact

MOS Modes of Operation

- Gate and body form MOS capacitor
- Three operating modes
 - Accumulation
 - Depletion
 - Inversion

MOS Modes of Operation : Accumulation

- When a negative voltage is applied to gate, there is negative charge on the gate.
- The mobile positive carriers are attracted to the region below the gate.

MOS Modes of Operation : Depletion

- A low positive voltage at the gate results in some positive charge on the gate.
- The holes in the body i.e. mobile positive carriers are repelled from the region below the gate; thus forming a depletion region.

MOS Modes of Operation : Inversion

- A higher positive potential (more than threshold voltage) attracts more positive charge to the gate.
- The holes in the body are repelled further and small number of electrons in the body are attracted to the region below the gate.
- This conductive electrons form inversion layer.

MOS regions of operation

Operations depends on V_a, V_d, V_s

$$-V_{gs} = V_g - V_s$$

$$-V_{gd} = V_g - V_d$$

$$-V_{ds} = V_d - V_s = V_{gs} - V_{gs}$$

 $V_{gs} + V_{gd}$ $V_{s} - V_{ds} + V_{d}$

- Source and drain are symmetric diffusion terminals
 - -By convention, source is terminal at lower voltage

-Hence $V_{ds} \ge 0$

- NMOS body is grounded.
- Three regions of operation
 - -Cutoff
 - -Linear
 - Saturation

NMOS regions of operation : Cutoff

- Gate to source voltage (V_{gs}) is less than threshold voltage (V_T)
- Source and drain have free electrons.
- Body has free holes, but no free electrons.
- No channel

NMOS regions of operation : Linear

- When, $V_{gs} > V_T$, $V_{gd} = V_{gs}$ and $V_{ds} = 0$
- Inversion region of electrons form a channel
- Since $V_{ds} = 0$, there is no electric field to push current from drain to source.
- \bullet Number of carriers and conductivity can increase with the gate voltage, and I_{ds} can increase with V_{ds}

NMOS regions of operation : Linear ...

- When $V_{gs} > V_T$, $V_{gs} > V_{gd} > V_T$, and $0 < V_{ds} < V_{gs} V_T$
- Since V_{ds}> 0, there is electric field to push current from drain to source.
- Current flows from d to s (i.e. e⁻ from s to d)
- Drain-to-source current I_{ds} increases with V_{ds}
- Linear mode of operation is also known as resistive and nonsaturated or unsaturated.

NMOS regions of operation : Saturation

- When V_{gs} > V_T , V_{gd} < V_T , and V_{ds} > V_{gs} - V_T
- Channel is not inverted near drain and becomes pinched off
- There is still conduction due to drifting motion of the electron
- I_{ds} independent of V_{ds} and depends on V_{gs} only.
- We say current saturates as current does not change much
- Similar to current source

Transistor : Pinch-off Condition

I-V Characteristics

- Three regions of operation:
 - Cut-off
 - Linear
 - Saturation
- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

I-V Characteristics : Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- The charge in channel, $Q_{channel} = CV$

•
$$C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$$
 (where, $C_{ox} = \varepsilon_{ox}/t_{ox}$)

- $V = V_{gc} V_T = (V_{gs} V_{ds}/2) V_T$
- Where, average gate to channel voltage V_{gc} = (V_{gs} + V_{ds}) /2 = (V_{gs} V_{ds}/2)

I-V Characteristics : Carrier velocity

- Charge is carried by e- (for NMOS)
- Carrier velocity v proportional to lateral electric field between source and drain

 $-v = \mu E$ (where, μ called mobility)

• Electric field between source-drain,

 $-E = V_{ds}/L$

• Time for carrier to cross channel:

-t = L / v

I-V Characteristics : Linear

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross
- The current between source-to-drain is the total amount charge in the channel divided by the time to cross channel.

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{\text{ox}} \frac{W}{L}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

I-V Characteristics : Saturation

- If $V_{gd} < V_t$, channel pinches off near drain
- The drain voltage at which current is no longer affected by it is known as drain saturation voltage.

-When
$$V_{ds} > V_{dsat} = V_{gs} - V_t$$

Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

I-V Characteristics : Summary

• Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

• The current at which transistor is fully ON I_{dsat}: I_{dsat} = $\beta/2 (V_{DD}-V_t)^2$

MOSFET Operating Regions : Summary

- Strong Inversion $V_{GS} > V_T$
 - Linear (Resistive) $V_{DS} < V_{DSAT}$
 - Saturated (Constant Current) $V_{DS} \ge V_{DSAT}$
- Weak Inversion (Sub-Threshold) $V_{GS} \leq V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence

Current-Voltage Relations

I-V Characteristics : PMOS

- All dopings and voltages are inverted for PMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
- Thus PMOS must be wider to provide same current

I-V characteristics of ideal pMOS transistor

-Typically, $\mu_n / \mu_p = 2$ Assume all variables negative!

Threshold Voltage: Concept

The Threshold Voltage

Current-Voltage Relations Long-Channel Device

Linear Region: $V_{\text{DS}} \leq \! \mathbf{V}_{GS}$ - \mathbf{V}_{T}

$$I_D = k_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

with

$$\mathbf{z'}_n = \boldsymbol{\mu}_n \boldsymbol{C}_{ox} = \frac{\boldsymbol{\mu}_n \boldsymbol{\varepsilon}_{ox}}{t_{ox}}$$

Process Transconductance Parameter

Saturation Mode: $V_{DS} \ge V_{GS} - V_T$ Channel Length Modulation $I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$

A model for manual analysis

$$V_{DS} > V_{GS} - V_T$$

$$I_D = \frac{k'_n W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

$$V_{DS} < V_{GS} - V_T$$

$$I_D = k'_n \frac{W}{L} ((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2})$$

with

$$V_T = V_{T0} + \gamma (\sqrt{\left|-2\phi_F + V_{SB}\right|} - \sqrt{\left|-2\phi_F\right|})$$

NOTE: Solve Example 3.5, page-90, Rabaey book.

A unified model for manual analysis

$$I_{D} = 0 \text{ for } V_{GT} \le 0$$

$$I_{D} = k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^{2}}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \ge 0$$
with $V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}),$

$$V_{GT} = V_{GS} - V_{T},$$
and $V_{T} = V_{T0} + \gamma(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|})$

Simple Model versus SPICE

The Transistor as a Switch

NOTE: Example 3.8, page-104, Rabaey book has the derivations.

The Transistor as a Switch

C-V Characteristics

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important – Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - -Called diffusion capacitance because it is associated with source/drain diffusion
- In general these capacitances are nonlinear and voltage dependent, but can be approximated as simple capacitors.

C-V Characteristics : Gate Capacitance

- Approximate gate capacitance as terminating at the source, thus $C_g = C_{gs}$.
- $C_{gs} = \epsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- \bullet $C_{permicron}$ is typically about 2 fF/ μm

C-V Characteristics : The Gate Capacitance

C-V Characteristics : Gate Capacitance

Operation Region	C_{gb}	C _{gs}	C_{gd}
Cutoff	$C_{ox}WL_{eff}$	0	0
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

Most important regions in digital design: saturation and cut-off

C-V Characteristics : Gate Capacitance

- The effective gate capacitance varies with switching activity of the source and drain.
- The switching activity is dependent on the input data to the device.

Data-dependent gate capacitance

C-V Characteristics : Overlap Capacitance

 Gate overlaps the source and drain by a small amount in real device.

• These capacitances are proportional to the width of the transistor.

Overlap capacitance

C-V Characteristics : Diffusion Capacitance

C-V Characteristics : Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D / \phi_0)^m} \qquad \begin{array}{l} m = 0.5: \text{ abrupt junction} \\ m = 0.33: \text{ linear junction} \end{array}$$

C-V Characteristics : Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest.

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1 - m)} [(\phi_0 - V_{high})^{1 - m} - (\phi_0 - V_{low})^{1 - m}]$$

C-V Characteristics : Summary

- MOS is a four terminal device.
- Capacitance exists between each pair of terminals.
- Gate capacitance include both intrinsic and overlap components.

Discover the power of ideas

Capacitances of an MOS transistor

NOTE: Solve Example 3.10, page-112, Rabaey book.

Non-ideal I-V Effects

- Two effects make the saturation current increase less quadractically than expected:
 - Velocity saturation
 - Mobility degradation
- Few more effects that impact the characteristics of MOS are:
 - Channel length modulation
 - Body effect
 - Subthreshold conduction
 - Junction leakage
 - Gate leakage (tunneling)
 - Operating temperature
 - Device geometry

Non-ideal I-V Effects : Vs Ideal

I-V Characteristic of Ideal NMOS

I-V Characteristic of Non-Ideal NMOS

Current-Voltage Relations: The Deep-Submicron Era

UNIVERSITY OF NORTH TEX Discover the power of ideas

Current-Voltage Relations: Perspective

I_D versus V_{GS}

$\mathbf{I}_{\mathrm{D}} \text{ versus } \mathbf{V}_{\mathrm{DS}}$

Non-ideal I-V Effects : Study Region wise

- In OFF state i.e. subthreshold region, there is some current flow, which has exponential variation.
- In ON State:
 - Linear Region: Linear variation
 - Saturation Region:
 Approximately quadratic variation

Non-ideal I-V Effects : Velocity Saturation

- Two electric fields:
 - Lateral (V_{ds} / L)
 - Vertical (V_{gs} / t_{ox})
- When lateral electric field is very high carrier velocity does not increase linearly with it.
- High vertical field also scatters the carriers.
- In turn reduces the carrier mobility; effect is called mobility degradation.

Carrier velocity vs. electric field

Non-ideal I-V Effects : Velocity Saturation ...

- Carrier saturation velocity, $v_{sat} = \mu E_{sat}$
- Typical Values:
 - For electron: 6-10 x 10^6 cm / s
 - For hole: 4-8 x 10⁶ cm / s
- Alpha (α) Power law model introduced a new parameter called velocity saturation index (α) to model it.

I-V characteristics for nMOS transistor with velocity saturation

Non-ideal I-V Effects: Channel Length Modulation

- The reverse biased p-n junction between the drain and body form a depletion region.
- The length of depletion region L_d increases with the drain to body voltage V_{db} .
- The depletion region shortens the channel length, $L_{eff} = L L_d$.
- It is very important for short channel transistors.

Non-ideal I-V Effects : Body Effect

- The potential difference between source and body V_{sb} can affect the threshold voltage.
- It is modeled using surface potential and body effect coefficient, which in turn depend on the doping level.
- Sometimes intentionally body biased is used to decrease the subthreshold leakage.
- Results in increase in threshold as:

 $V_T = V_{T0}$ + Change on V_T

 $V_{th} = VFB + \Phi_s + \gamma \sqrt{\Phi_s - V_{bs}} = VTH0 + \gamma \left(\sqrt{\Phi_s - V_{bs}} - \sqrt{\Phi_s}\right)$

Non-ideal I-V Effects : The Body Effect

Non-ideal I-V Effects : Subthrehold Conduction

- In OFF state, undesired leakage current flow.
- It contributes to power dissipation of idle circuits.
- Drain-Induced-Barrier-Lowering (DIBL) an prominent effect for short channel transistors also impacts subthreshold conduction by lowering V_T .
- \bullet This current increases as the V_{T} increases.
- It also increases as the temperature increases.
- If v_t is the thermal voltage and I_0 is the current at V_T then the subthreshold current is :

$$I_{ds} = I_0 \left[1 - \exp\left(-\frac{V_{ds}}{v_t}\right) \right] \cdot \exp\left(\frac{V_{gs} - V_{th} - V_{off}'}{nv_t}\right)$$

Non-ideal I-V Effects : Subthrehold Conduction

Threshold as a function of the length (for low V_{DS})

Drain-induced barrier lowering (for low *L*)

Subthreshold Variations

Non-ideal I-V Effects : Subthrehold Conduction

64

Non-ideal I-V Effects : Subthrehold Conduction $(I_D vs V_{GS})$

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right)$$

Non-ideal I-V Effects : Subthrehold Conduction (I_D vs V_{DS})

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}}\right) \left(1 + \lambda \cdot V_{DS}\right)$$

Non-ideal I-V Effects : Junction Leakage

- The pn junctions between diffusion, substrate and well are all junction diodes.
- These are revered biased as substrate is connected to GND and well connected to V_{dd} .
- However, reversed biased diode also conduct small amount of current.

Reverse-biased diodes in CMOS circuits

Non-ideal I-V Effects : Tunneling

- There is a finite probability for carrier being pass through the gate oxide.
- This results in tunneling Gate current components current thorough the gate oxide.
- The effect is predominate for lower oxide thickness.
- Substituting gate oxide with other dielectric with high-K is as an alternative.

Gate leakage current from

Non-ideal I-V Effects : Temperature

- Carrier mobility decreases with temperature.
- The magnitude of threshold voltage is linear with the increase in temperature.
- The junction leakage increases with temperature.
- In summary: ON state current decreases and OFF state increases with temperature.
- Thus circuit performance is improved by cooling, hence heat sink, radiators, cooling fans !!

 I_{dsat} vs. temperature

Non-ideal I-V Effects : Geometry

- Width and length for each device should be appropriately chosen for current matching.
- The actual dimension of the device may differ due to several reasons:
 - Manufactures using mask of wrong dimension
 - More lateral diffusion of source and drain
- NOTE: Combination of threshold, effective channel length, channel length modulation, etc reduces the current carrying capacity by half.

