Lecture 5: The Processor

CSCE 2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.RSl 'Y ©OF NORTH TEXAS
SCOover The

D1 er the power of ideas

Lecture Outline

e Construction of a Simple MIPS Processor
e Single Cycle Processor
 Multicycle Processor

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Levels of Representation

High L | L temp = vik]
| evel Language
gProgram e V(K] = v[k+1];
vlk+1] = temp;
Compiler
lw$15,0($2)
AssperrgggmLanguage lw$16, 4($2)
sw $16, 0($2)
Assembler SW $15’ 4($2)
- 0000 1001 1100 0110 1010 1111 0101 1000
Ma%h'ne Language 1010 1111 0101 1000 0000 1001 1100 0110
rogram 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111
LMachine Interpretation

%HUEN Signal - |||

091G ALUOP[0:3] <= InstReg[9:11] & MASK
| Specification_

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

A 4

Execution Cycle

Instruction
Fetch

Obtain instruction from program storage

A 4

Instruction
Decode

Determine required actions and instruction size

Operand
Fetch

Locate and obtain operand data

v

Execute

A 4

Compute result value or status

Result
Store

Deposit results in storage for later use

v

Next
Instruction

Determine successor instruction

UNT

UNIVERSITY OF NORIH TEXAS

r);‘\.Ll_I\I_'T l1lt.' POwWerT Ol 1‘;1|_';H

CSCE 2610: Computer Organization

The Processor: Datapath & Control

 We're ready to look at an implementation of the MIPS

« Simplified to contain only:
— memory-reference instructions: Iw, sw
— arithmetic-logical instructions:add, sub, and, or, slt
— control flow instructions: beq, J

e Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the Instruction from memory
—read registers
— use the instruction to decide exactly what to do

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

More Implementation Detalls

o Abstract / Simplified View

e Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

L Data

Register #
PC t==»! Address Instruction { Registers AL Address

Instructionl] Register #

memory wd Datall |
Register # memory

»| Data
UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Basic Building Blocks

e Latches

 Flip-flops

« Combinational Elements
e Sequential Elements

» Clocking strategies

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

State Elements

 Unclocked vs. Clocked

* Clocks used in synchronous logic
— when should an element that contains state be

updated” I/falling edge
) cycle time] \

risingedge p

e The set-reset latch
— output depends on present
Inputs and also on past inputs

3

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Latches and Flip-flops

 Output Is equal to the stored value inside the
element

 Change of state (value) is based on the clock

o Latches: whenever the inputs change, and the
clock Is asserted i

 Flip-flop: state changes only on a|clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

UNT CSCE 2610: Computer Organization

UNIWVE K‘JJ [Y JF MNORIH l]_){."\b
Dis * the power of idea

D-latch

e TWO Inputs:
— the data value to be stored (D)
— the clock signal (C) indicating when to read & store D

 Two outputs:
— the value of the internal state (Q) and it's complement

C D——
—Q
C E—
—Q
D *— Q

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

D flip-flop

* Output changes only on the clock edge

D D DDQ D DDQ Q
latch latch _
C C 0 0
C «[{>c
[]
D ——
C I
Q I

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

Our Implementation

 An edge triggered methodology

Typical execution:
— read contents of some state elements

— send values through some combinational logic

— write results to one or more state elements

Statel]

element
1

Combinational logic

Clock cycle ——

>

Statell
element]
2

UNT CSCE 2610: Computer Organization

LJ\l"v" R‘:J [Y l J'N(J“l[li l]_}!."\b

Register File: Read Operation

e Built using

Read register(s

D flip-flops (Combinational in nature)

number 1

3

Register 0 ">
Register 1 -¢ > MO
) g > —»> Read data 1
Registern — 1 9 — >
Registern |—e >

Read registeri3
number 2

UNT

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

ull
_/
N

> MO

| ul » Read data 2
»| X
>

\—/

CSCE 2610: Computer Organization

Register File: Write Operation

e We still use the real clock to determine when to

write
Write
.—
0 —C
Register 0
1 » D
n-to-10] &)_ C
Reqi > -10- . :
egister number decoder | - Register 1
@ » D
n-1
n
.—
D
Registern — 1
® » D
8
Register n
Register data ¢ g

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Register File: Block Diagram

Read register

number 1 Read
data 1

Read register
number 2

Three Address ports
One Data Input Port

Write Register file Two Data Output Ports

register One Write Control Signal

Read
Write data 2

data Write

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Functional Units - |

a: Instruction Memory

After an Instruction address Is put, the Instruction
residing at the address appears at the output port

b: Program Counter -- A simple up counter
c: Adder -- A 2's complement adder

| Instructiond
address —
am—) PC'“
INStruction fe—> >Add Sum
Instructiond
memory —
a. Instruction memory b. Program counter c. Adder

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Functional Units - |l

a. Reqister File

It's construction, read, and write operations as discussed previously
b: ALU (Arithmetic & Logic Unit)

Recall the ALU design we have discussed in last two classes

Note the “Zero” output

-5 ALU control
Read
—p :
register 1 Read B 3\
: data 1 ' g
Register 2 _i» Read
numbers register 2 Zerol—p
Registers > Data >ALU ALU
O | Write | —
S| VI result
L register
Read |
Write data 2 J
Data < ==—> data
RegWrite

. a. Register File b. ALU
UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Functional Units -1

a: Data Memory Unit
Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit -- Extends 16-bit input operand to 32 bits

MemW rite
] Address Read |
data 16 _ 32

\ Sign

D ata extend

: W rite
data memory
MemRead
a. Data memory unit b. Sign-extension unit

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS 18 Wk i
£as o

Discover the power of id

Datapath for Instruction Fetch (Piece)

« Fetching Instructions and Incrementing the program counter by 4

Read
address

PC

Instructionl]
memory

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Datapath for R-type Instructions (Piece Il)

o Datapath for R-type Instructions

ALU operation
Read 3 \i\ perat
register 1
Read e Zero
Instruction register 2

~ Reaqisters >ALU ALU
\r/ggitseter result
Write ala
data

RegWrite

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Datapath for Load/Store (Piece lll)

« Datapath for load or store

(1) Register Access; (2) Memory Address calculation; (3) Read/Write
(4) Write into Register file (if the instruction is a load)

3 ALU operation
Read |
register 1 MemWrite
i
Read ata
Instruction register 2 Zero—>
. Reqisters >ALU ALU
er_tet result »| Address %2%3
register Read R
- data 2
\o/l\gtlge Data
i Write memory
RegWrite
’ ”| data
16 _ 32 '
\ Sign MemRead
N | extend

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Datapath for Branch (Piece V)

o Unit “Shift left 2” adds “00” at the low-order end of the sign-extended offset

e Control logic is used to decide whether the incremented PC or branch
target should replace the PC based on the “Zero” output of the ALU

PC + 4 from instruction datapath =

> Add Sum Branch target
»
ALU operation
Read ’
Instruction register 1 Read
Read data 1
register 2
Registers >ALU Zero To bralnlch_
Write control logic
register Read o
Write data 2
data
RegWrite
16 _ 32
Ny | Sign
N lextend

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Datapath Construction Strategy

« Now, we have “pieces” of datapath that are capable of
performing distinct functions

« We want to “stitch” them together to yield a final
datapath that can execute all the instructions (lw, sw,
add, sub, and, or, slt, beq, |)

« We will use multiplexors (or muxes for short) for
stitching the datapath

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Datapath Construction (Merge Pieces l1&lll)

ALU operation

Read

register 1 Read

Read data 1

|Instruction register 2 .
Reqgisters ALU

Write g > ALIU
register Read

Write data 2

data

e

Plece I I 3 ALU operation
ReadD
+ register 1 Read] MemWrite
Readl data 1
P - I I I Instruction register 2 Zero—»
..__Registers >ALU ALU
Iece erj[etD result »| Address %Z?g]
register Read .
; data 2 "
> \é\ellrtI;eD Datall
. memory
_| Write

RegWrite * data

| RegWrite

L]

32

.| Signd MemRead

| extend

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

And you will get..

 Rule: Whenever we have more than one input feeding a functional unit,
iIntroduce a multiplexor (this gives rise to a control signal, more later..)

Registers
Read J .
register 1 \
Read Read -
— register 2 data 1 Zero
Write Read R >(L >A|—U ALU Address Read */L
>regis.ter data 2 M result] % data y
Ul..p -
.) Ul.,
AN Write Memory E*UE
—> :
data .
16 [sign \32 :
\ | extend \

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Datapath Construction ... (merge Piece |)

o Just tack the Instruction Fetch and PC increment logic at
the front!

> Add

4
.| Read Registers ;
Read register 1 AN
> | P Cré>
address Read thealol >
_ register 2 ata Zero
Instruction _ >ALU
Write Read ALU Address Readl,
register data 2 M result data M
Instruction Write S u
memory | data Data X
,| Write Memory >
l data
AN
>\ extend

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Datapath Construction (merge Piece V)

PCSrﬁL
p—) >
SAdd l . ML
X
A
4= >Addresu t _/
—p
Registers :
Read ’ 3| ALU operation MemWrite
' ALUSIC |
N[=te]® N Rccleé;\d register 1 Read R
address Read data 1 MemtoReg
register 2
Instruction _
Write Readl o1 Address Readl,
. register data 2 M data| M
Instruction - u ¥
memory - \d/\gt';e X Data X
: ,| Write Temory
ReanteI data
16 : 32
\ Sign
1 extend MemRead

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Final Datapath

« Data flows through various “paths” under the influence of control signals
 There are seven control signals (of type Read, Write, or Mux Select)

PCSr
> \ "1
>Add l > !
AL 5
0
4 / >Add
RegWrite N
I
Instruction [25—21] | Read
Read “|register1 Read MemWrite
= PC fth=p : —
address instruction [20-16] Reao{ , data 1 ALUSTC ‘ MemtoReg
Instruction (1) register Read > Z:Lra
= . ALU
[31-0] M =] VVTItE data 2 1 result Address Readl__f1
: _ U register M data
Instruction Instruction [15-11] [x | [\wirite u I:J/I
memory ¢ 10| Plgam Redisters L)(() > X
N Wiite Dafa B
RegDst »|data Memory
Instruction [15—0] 1\6 Sign | 32 ;
v\ extend MemRead
Instruction [5—0]
ALUOp

UNT CSCE 2610: Computer Organization 28 '

UNIVERSITY OF NORIH TEXAS

r);‘\.Ll_I\I_'T l1lt.' POwWerT Ol 1‘;1|_';H

Defining the Control..
» Selecting the operations to perform (ALU, read/write, etc.)
« Controlling the flow of data (multiplexor inputs)
* Information comes from the 32 bits of the instruction

 Example:
add $8, $17, $18 Instruction Format:

000000 |10001 |10010 |0O1000 |0OOO0OO (100000

op rs rt rd shamt funct

 ALU's operation based on instruction type and function code

 We will design two control units:

(1) ALU Control to generate appropriate function select signals for the ALU

(2) Main Control to generate signals for functional units other than the ALU

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Defining the ALU Control ... Contd.

e e.g., what should the ALU do with this instruction
 Example: Iw $1, 100($2)

35 2] 100

op rs rt 16 bit offset

 ALU control input
000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

UNT CSCE 2610: Computer Organization

UNIVERSITY GOF NORTH TEXAS
Driscover the power of ideas

ALU Control Design

 Must describe hardware to compute 3-bit ALU control input

— given instruction type
00 = lw, sw
01 = beq,
10 = arithmetic

— function code for arithmetic
 ALU Control inputs — How are they determined?

T~ ALUOp

computed from instruction type

Instruction Instruction Funct Desired ALU Control

Opcode ALUOp Operation Field ALU Action Operation
LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010
Branch equal 01 branch equal | XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 setonless than 101010 seton less than 111

UNT

UNIVERSITY OF NORIH TEXAS
£as

Discover the power of id

CSCE 2610: Computer Organization

ALU Control - Truth Table & Implementation

Describe it using a truth table (can turn into gates):

ALUODp Funct field Operation
ALUOpPI1|ALUOPO|F5|F4[F3|F2]|F1[FO
0 0 X [X X[X | X |[X 010
X 1 X [X X | X [XX 110
1 X X1 X10]1]0710 0 010
1 X X |1 X]1]0]0 1 0 110
1 X X1 X 10 1 0 0 000
1 X X1 X 10 1 0 1 001
1 X X1 X 11 0 1 0 111
ALUOp
v ALU control block
'ALUOpO
ALUOp1
F3 1 Operation2
= Operation
F2 ¢ Operationl ’
F (5-0) l :) >
™ F1
— Operation0
FO -

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Designing the Main

Control

> 0
M
> u
4 X
ALU
>Add result !
>Add
4
4= »
Instruction [31-26]
> Control
read Instruction [25-21] .| Read
PC >| address _ register 1 Read >
Instruction [20-16] | Read datal
Instruction . register 2 > ALU
[31-0] 0 _ Registers Reag — ALU Read
. M Wite data2 result »| Address vy e
Instruction u reg|ster M a M
memory Instruction [15-11] | X . y u
[] >l 1 \é\gtl;e R 1X Data X
g memo
| Wtite v 0
"| data
. 16 32
Instruction [15-0] \ | Sign
N “lextend ALU
control
Instruction [5—-0]

UNT

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

CSCE 2610: Computer Organization

Control Signals and their Effects

Signal Name

Effect When deasserted

Effect when asserted

RegDst

The register destination number for the Write

The register destination number for the Write

register comes from the rt field (bits 20-16)

register comes from the rd field (bits 15-11)

RegWrite |NONE The register on the Write register input is
written with the value on the Write data input
ALUSIrc The second ALU operand comes from the The second ALU operand is the sign-extended
second register file output (Read data 2) lower 16 bits of the instruction
PCSrc The PC is replaced by the output of the adder that| The PC is replaced by the output of the adder
computes the value of PC + 4. that computes the branch target
MemRead None Data Memory contents designated by the address
input are put on the Read data output
MemWrite None Data memory contents designated by the address
input are replaced by the value on the Write data input
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes

UNT

UNIVERSITY @F NORITH
+ the 1 or of id

Driscover the power of

comes from the ALU

TEXAS
eas

CSCE 2610: Computer Organization

from the data memory.

Main Control: Truth Table & Implementation

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc Req Write | Read [Write [Branch | ALUOp1 | ALUpO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
Inputs
Op5 o ® —
Op4 > * 9
Op3 * ?
Op2 T. T. ® ®
Opl T P P T
OpoO
(e]e) g 000 o]O (e]e]e) J)g
U L L [; Outputs
R-format lw SwW beq
T RegD st
) ALUSTC
[
l ¢ MemtoReg
) RegWrite
I MemRead
[MemW rite
[Branch
l ALUOp1

UNT '
CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Our Simple Control Structure
 All of the logic Is combinational

 We walt for everything to settle down, and the right
thing to be done

— ALU might not produce “right answer” right away

— we use write sighals along with clock to determine when
to write

* Cycle time determined by length of the longest path

Clock cycle

We are ignoring some details like setup and hold times

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

How does the single cycle datapath work?

e Let us understand this by highlighting the portions of
the datapath when an R-type instruction is executed

 For an R-type instruction we go through the following
phases:

Phase 1: Instruction Fetch

Phase 2: Register File Read

Phase 3: ALU execution

Phase 4. Write the Result into the Register File

« NOTE: All the four phases are completed in only ONE
clock cycle and hence it Is a “single cycle
Implementation”

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

R-type Instruction — Phase 1
(Instruction Fetch)

0
. M
> u
X
AL
>Add result L
4
Instruction [31—26]
» Control
Instruction [25-21] | Read
J Read | register 1
- address _ register Read ,
Instruction [20-16] | Read deta 1
Instructi | | register 2
s [31_0& —— 0 " Registers Read 06 >ALU AL
: M Wite data 2 ! resut »| Address Readl (7
Instruction u register M e I IV
fremory Instruction [15-11] | X Wiite . u
» 1 > dat Data X
a —\ memory 0
»| Wite
data
Instruction [15-0] L [s |
* lextend ALU
contra
Instruction [5—0]

UNT

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

CSCE 2610: Computer Organization

R-type Instruction — Phase 2
(Register Read)

0
. M
> u
X
ALl
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
Read i
address | register 1 Read
Instruction [20-16] Read data 1
. register 2
Imt??ﬁtlo&]—> 0 \,3 Registers Read A >ALU AL Read
. M \ite data 2 resuit »| Address —(1
Instruction u register M data M
remory Instruction [15-11] | X White . u
> 1 > dat Data X
a — memory 0
»| Wite
data
Instruction [15-0] _ L s |
i ® lextend| ALU
contrd
Instruction [5-0]

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

R-type Instruction — Phase 3
(ALU execution)

0
. M
> u
X
AL
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
;Rc?dardess register 1 Read
Instruction [20-16] Read data 1
. | register 2
Imt??ﬁtlo& 0 \,3 Registers Read A >ALU AL Read
. M \Wite data2 resut »| Address —(1
Instruction u register M data M
remory Instruction [15-11] | X White . u
> 1 > dat Data X
a —\ memory 0
»| Wite
data
Instruction [15-0]) L s |
* extend| ALU
contrd
Instruction [5-0]

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

R-type Instruction — Phase 4
(Write the Result)

0
. M
> u
X
ALl
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
;Rc?dardess register 1 Read
Instruction [20-16] Read data 1
. | register 2
Imt??ﬁtlo& 0 \,3 Registers Read A >ALU AL Read
. M \ite data2 resuit »| Address —(1
Instruction u register M data M
remory Instruction [15-11] | X White . u
> 1 dat Data X
a —\ memory 0
»| Wite
data
Instruction [15-0]) L s |
® lextend| ALU
control
Instruction [5-0]

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

How do we handle jump?

N\
Instruction [25—0] \ / Shif[B\ Jump address [31-0]
\ \
26 @28 o L
PC+4 [31-28] > '\le I\JI
\ X X
> ALU
BAdd result 1 0
>Add \
Jump
4] ey
Instruction [31—26]
» Control
readl Instruction [25—21] | ReadCl
| pc M s | register 1 dReald[D ,
Instruction [20—16] | ReadDI ata
. ["| register 2
Instr[lé(]:-th(;iD 0 __Registers Read 0 5ALU ALU Read[J
. M WiitelJ data 2 g result »| Address cad (1
Instruction(] u register M data MO
memor ; X u
y Instruction [15—11] 1 | WiiteD X Datal] g
data ->| 1 memory 0
Write[d
"| data
Instruction [15-0] {6 | SignOd %
\ “lextend

Instruction [5-0]

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS 42

Diiscover the power of ideas

Single Cycle Implementation: Summary

* All instructions are executed in only clock cycle
 We built a single cycle datapath from scratch

« We designed appropriate controller to generate correct
correct signals

o All instructions are not born equal; that some require
more work, some less => disadvantage of single cycle
Implementation is that the slowest instruction determines
the clock cycle width

 In reality, no body implements single cycle approach.

 Given the single cycle datapath, you should be able to
*highlight” active portions of the datapath for any given
Instruction.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Single Cycle Implementation - Issues

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area
— Cycle width determined by the slowest instruction

e One Solution:
— use a “smaller” cycle time

— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Slngle Cycle, I\/Iultlple Cycle, vs. Plpellne

m | | | |
Cycle 1 > |
Slngile Cycle Implementation: : SyC € :
Load I Store : Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cyclé 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 SCyCIeE 10

73 I O O Y Y O Y Yy O

Multgple Cycle Implementation: : E
: Load Store ! R-type
Ifetchl Regﬂ Exec I Mem I Wr I Ifetchl Regﬂ Exec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Regu Exec I Mem I Wr

Store Ifetchl Regu Exec I Mem I Wr

UNT R-type Ifetchl Regu Exec I Mem I Wr

CSCE 2610: Computer Organization
LJ‘\l‘v’ R‘:J [Y l J'N(_Zl*l[li 1].}(.1'\.5

Multicycle Approach

 We will be reusing functional units
— ALU used to compute address and to increment PC

— Memory used for instruction and data
e Our control signals will not be determined solely

by Instruction
— e.g., what should the ALU do for a “subtract” instruction?

e \We'll use a finite state machine for control

 Break up the Instructions into steps, each step
takes a cycle

— balance the amount of work to be done
— restrict each cycle to use only one major functional unit

o Atthe end of a cycle

— store values for use in later cycles (easiest thing to do)
— Introduce additional “internal” registers

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Multicycle Approach — High Level View

et
|
—>| Data
—>| PCH——#->| Address N
p—] A
I _ Register #
Memory nst(r)l#cégg Registers >ALU ALUOuUt~¢

Memory Register #

data — B [
| P register Regjister # [

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Multicycle Approach

 handles the basic instructions

I

Instruction
Address [25-21]

Instruction
[20-16]

Menory

Instruction
| [15-0)
—p | Vit Instruction
register

Instruction 0

[15-Q M
u
X
1

data 16 |3
register ‘\ > ejg:ld

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS

r);‘\.Ll_I\I_'T l1lt.' pPOwWer Ol 1‘;1|_';H

Five Execution Steps

 |nstruction Fetch
 |Instruction Decode and Register Fetch

e Execution, Memory Address Computation, or
Branch Completion

« Memory Access or R-type instruction completion
* Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
r);‘\.Ll_I\I_'T he POWET l.lf. i cas

Step 1: Instruction Fetch

e Use PC to get Instruction and put it In the
nstruction Register.

* Increment the PC by 4 and put the result back In
the PC.

e Can be described succinctly using RTL "Register-
Transfer Language”

IR <= Memory|[PC];
PC <= PC + 4;

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
r);‘\.Ll_I\I_'T he POWET l.lf. i cas

Step 2: Instruction Decode and Register
Fetch

 Read registers rs and rt in case we need them

e Compute the branch address In case the
Instruction is a branch

 RTL:
A <= Reg] IR[25-21]];

B <= Reg|[IR[20-16]];
ALUOut <= PC + (sign-extend(IR[15-
0]) << 2);

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
r);‘\.Ll_I\I_'T he POWET l.lf. i cas

Step 3: (Instruction dependent)

 ALU is performing one of three functions, based
on instruction type

« Memory Reference:
ALUOuUt <= A + signh-extend(IR[15-0]);

e R-type:
ALUOuUt <= A op B;

e Branch:
iIT (A==B) PC <= ALUOuTt;

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
r);‘\.Ll_I\I_'T he POWET l.lf. i cas

Step 4: (R-type or memory-access)

 Loads and stores access memory
MDR <= Memory[ALUOut];

or
Memory[ALUOut] <= B;

e R-type instructions finish
Reg[IR[15-11]] <= ALUOut;

The write actually takes place at the end of the
cycle on the edge.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
r);‘\.Ll_I\I_'T he POWET l.lf. i cas

Step 5: Write-back step
e Reg|[IR[20-16]] <= MDR;

Summary of Steps taken to execute any instruction class.

Action for R-type [Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR <= Memory[PC]
PC<=PC+4

Instruction A <= Reg [IR[25-21]]
decode/register fetch B <= Reg [IR[20-16]]

ALUOuUt <= PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut<=AopB ALUOuUt <= A + sign-extend if (A ==B) then |PC <=PC [31-28] |I
computation, branch/ (IR[15-0]) PC <= ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type | Reg [IR[15-11]] <= |Load: MDR <= MemonryALUOut]
completion ALUOut or

Store: Memory [ALUOuUt] <=B
Memory read completion Load: Reg[IR[20-16]] <= MDR

* This sequence suggests what controller must do on each
clock-cycle.

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
£as

Discover the power of id

Multicycle Datapath with Control Lines

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSIcA
PC 0 0
M Instruction »| Read M
u Address [25—21] | register 1 u
X . Read A X
-|1 Memory Instruction »| Read data 1 ™% Zerob—>
[20-16] register 2 1 > ALU .
MemData [t . 0) Registers ALU ALUOU
Instruction | M Write Read result
[15-01[| \struction| U register data 2 ™| B |aguu——_(0
Write ; 15— 11 X) M
| data Instruction | QIL2_L1l,, 1 Write 4=l M 7
register data —| 2
Instruction 0 3
[15-0] M
u
X
| Memory - \1
data 16 ALU
register @ \\ > | CONtIO|
Instruction [5—0]
@
MemtoReg ALUSrcB ALUOp

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Multicycle Datapath with Controller

/7_,_<_—| PCWI‘iteCOHd/\ PCSource
—_— PCWrite/ \ALUOD

lorD I Outputs
MemRead ALUSrcB
MemWwrite| Control ALUSIEA
MemtoReg RegWrite
. Op
IRWrite [5-0] R G \
A M
26 28 Jump v
Instruction [25-0] L [shift address [31-0] , X
M \left 2 v
Instruction
oc s [31-26] I (0 PC [31-28]
M Instruction —.| REA M
u Address [25—-21] " | register 1 u
X
Instruction |{ Read REAd | A X Zero
=1 Memory [20- 16] register 2 data 1 i 1 ALU .
MemData =) _Registers ALU @9 | ALUOU tfimmmm
Instruction _5 Write Read B result
_ [15-0] Instruction register gata 2 > O —
> X\g{'ae Instruction [15-11] Write 4 =-p|1 I\Lil /
register data —2
Instruction 3
[15-0]
»| Memory
data
register [—
Instruction [5— 0]
>

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Implementing the Control

e Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed
« Use the information we’'ve accumulated to specify a
finite state machine
— specify the finite state machine graphically, or
— Use microprogramming

 Implementation can be derived from specification

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Actions of the 1-bit control signals

Signal Name|Effect When deasserted Effect when asserted
RegDst The register destination number for the Write | The register destination number for the Write
register comes from the rt field register comes from the rd field
RegWrite |NONE The general purpose register selected by the Write
register number is written with the value of the Write
data input.
ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.
MemRead None Content of Memory at the location specified by the
Address input is put on Memory data output.
MemWrite |None Memory contents at the location specified by the
Address input is replaced by value on Write data input.
MemtoReg The value fed to the register file Write data input The value fed to the register file Write datainput comes
comes from ALUOut from the MDR.
lorD The PC is used to supply the address to the ~ ALUOut is used to supply the address to the memory
memory unit. unit.
IRWrite None The output of the memory is written into the IR.
PCWrite None The PC is written; the source is controlled by PCSource
PCWriteCond None The PC is written if the Zero output from the ALU is acti

UNT

UNIVERSITY OF NORIH TEXAS

Driscover the power of

ideas

CSCE 2610: Computer Organization

Actions of the 2-bit control signals

Signal Name

Value

Effect when asserted

IIOOII

The ALU performs an add operation.

ALUOp

"01"

The ALU performs a subtract operation.

lllOIl

The funct field of the instruction determines the ALU operation

IIOOII

The second input to the ALU comes from the B register.

ALUSrcB

llolll

The second input to the ALU is the constant 4.

lIlOII

The second input to the ALU is the sign-extended,

lower 16 bits of the IR.

llllll

The second input to the ALU is the sign-extended,

PCSource

UNT

UNIVERSITY OF NORIH TEXAS

r);‘\.Ll_I\I_'T l1lt.' POwWerT Ol 1‘;1|_';H

IIOOII
"01"

lllOIl

CSCE 2610: Computer Organization

lower 16 bits of the IR shifted left 2 bits

Output of the ALU (PC + 4) is sent to the PC for writing.
The contents of the ALUOut (the branch target address)
are sent to the PC for writing.

The jump target address (IR[25-0] shifted left 2 bits and
concatenated with PC + 4[31-28]) is sent to the PC

for writing

Finite state machines

* Finite state machines:
— a set of states and
— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)
— We'll use a Moore machine (output based only on current state)

Nextd
state

»| Current state ® > Next-s_tateD
_,\ function

Clock
Inputs ®

Outputld
function

» Outputs

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Finite State Machine Control for Multicycle
Implementation

Start

! '

Instruction fetch/decode and register fetch(
(Figure 5.32)

l | l l

Mgmory "?‘CCGSSD R-type instructions[| Branch instruction)] | Jump instructionld
Instructinn<r]

(Figure 5.33) (Figure 5 34) (Figure 5 35) (Figure 5 36)

UNT CSCE 2610: Computer Organization

L'NIV_LHSI 'Y ©OF NORTH TEXAS 61 K

Driscover the power of ideas

Instruction Fetch & Decode (Fig 5.32)

_ Instruction decode/
Instruction fetch Register fetch

0
MemRead 1
ALUSrcA=0
lorD =0
IRWrite ALUSrcA=0
Start ALUSrcB = 01 » ALUSrcB =11
ALUOp =00 ALUOp =00
PCWrite
PCSource = 00
,\\;96\ o) T
2> @Q’ >
\\ KOQ Y4 ™
,‘S\N R I
(OP
v
Memory reference FSM R-type FSM Branch FSM Jump FSM
(Figure 5.33) (Figure 5.34) (Figure 5.35) (Figure 5.36)

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Memory Reference Instructions (Fig. 5.33)

From state 1
1(Op = 'LW") or (Op = 'SW')

Memory address computation

ALUSIcA=1
ALUSrcB = 10
ALUOp =00

Memory

¥ access access
3
MemRead .
MemWrite
lorD =1

lorD=1

v Write-back step

To state O

RegWrite .
" (Figure 5.32)

MemtoReg =1
RegDst =0

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

R-type, Branch, Jump..

From state 1
(Op = R-type)

Execution

From state 1
(Op ='BEQ’)

ALUSrcA=1
ALUSrcB =00
ALUOp =10

ALUSrcA=1
ALUSrcB =00
ALUOp =01
PCWriteCond
PCSource =01

R-type completion

RegDst=1
RegWrite
MemtoReg = 0

To state O
(Figure 5.32)

To state O
(Figure 5.32)

UNT CSCE 2610: Computer Organization
UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Branch completion

From state 1
(Op=1J)

Jump completion

PCWrite
PCSource = 10

To state O
(Figure 5.32)

Graphical Specification of FSM

y Instruction fetch

Instruction decode/
register fetch

MemRead 1
ALUSIrcA=0
lorD=0 ALUSIcA=0
Start ——» IRWrite »| ALUSICB =11
ALUSIrcB =01 ALUOp =00
ALUOp =00
PCWrite
\\
//?\’NQG\ Q)((’o :':;
Memory address W) S Q// o
computation Kop’ S _ Branch \S Ol Jump _
B W) of Execution completion completion
(O
ALUSICA = 1 ALUSreA =1
- ALUSICA =1 ALUSICB = 00 _
ALUSIcB = 10 ALUSICB = 00 ALUOp =01 et
ALUOp =00 ALUOp= 10 PCWriteCond
PCSource =01
= Q
= B
=~ &%
1)
8‘ Memory Memory
¥ access access R-type completion
3 5 7
) RegDst =1
MemRead MemWrite RegWrite
lorD =1 lorD =1 MemtoReg = 0

v Write-back step

RegDst=0
RegWrite

MemtoReg=1

CSCE 2610: Computer Organization

UNT

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Finite State Machine for Control

/'

Control logic

Outputs

Inputs
A g
e B

PC W rite

PCWriteCond

lorD

MemRead

MemW rite

IRW rite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSTrcA

RegW rite

RegDst

NS3

NS?2

NS1

NSO

UNT

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

SBEEEEERERER

Instruction register(] State register

opcode field I T 3

CSCE 2610: Computer Organization

Multicycle Datapath to Handle Exceptions

| = Caysairng
— POWeCang i uss
' Brdime S EH.'.\'E:I'I:-D
|
|

= PG00 CH
MamArad Coevirod s
| | ALUEE
[s IIl ALLISITA
h'll:ulll:.!nl.l-u [5-0] Fag'#inia
=amin / Feglsel Jd 1
uma]
adiirass B E
Il'll'h'l-ll!fﬂTﬂfB—U] 2 z"
I actiom
1 uctin S G =
- PG N Inginicion | |
u Aiddness [#=E1] g +|i|-L,
| 1 I%
idata i
i Instrucion 1 P
L/ Memory |- [2-1E] o resater 2
| 7 Ragisters v—t ALUOUL ¥ | Epr
(1600 | |beamlruastian 2—-— W"'I.t_.m Road n K]
e 5-11] N
of e [x| data 2 :I‘q:;
regisser R m""m 2x
Instruction - i

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Multicycle Control to Handle Exceptions

l_'"m"*““" Instruction decods

registar fatch
o ALLISICA = 0 1
lofl =0
| v ALUSIcA = 0
E‘Iﬂ'—l‘- AL = 01 ALUSCE = 11 I
ALLIOR = 00 AL = 0O

5
8
Memory address
eamputalion
2
ALUSCh = 1
| PCMite
A.I.L.Ismﬂ-iﬂl | ALUSTB =00 | | | | Pcseurcs =10 |

ALLIOR = 00 AL -

\\., Q -

i
ﬁ ACCIES AOCIEE k. Fl-hmmrrlﬂuh:ri :
3 5 7 -‘ 1n/"t‘-"-m
) Ve [e/ 55\ 7
\"/ '\'f“‘/ e
4
| RAeghst =0 |
UNT CSCE 2610: Computer Organization
UNIVERSITY @F NORTH TEXAS

Mamary Memary r
ﬂ1 ALLOp = EI'I
EF'C-'I\'IHE
E-nurm 11 F‘Eiﬂl.ll'tﬂ 11
Write-back stap Cverllow 1 ‘IV
MemtoRiag =1 |
Diiscover the power of ideas

Controller Implementation: Big Picture

Initial Finite state .
: : Microprogram
representation diagram

—

Sequencing Explicit next Microprogram counter
control state function + dispatch ROMS
—
Logic Logic Truth
representation equations tables
=
Implementation Programmable Read only
technique logic array memory

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Summary

e Single-cycle implementation
e Multi-cycle implementation

— Is an effective implementation: slower instructions take more
clock cycles, faster, less!

— Higher resource sharing (area is less)

o State diagrams can be used to specify the control

« From FSM spec, we can automatically synthesize the
controller implementation.

o Controller Implementation
— Three choices: ROM, PLA, and Microprogramming
— PLAs is more efficient in terms of area compared to ROM
— Microprogramming is a flexible style (popularized by CISC)

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

