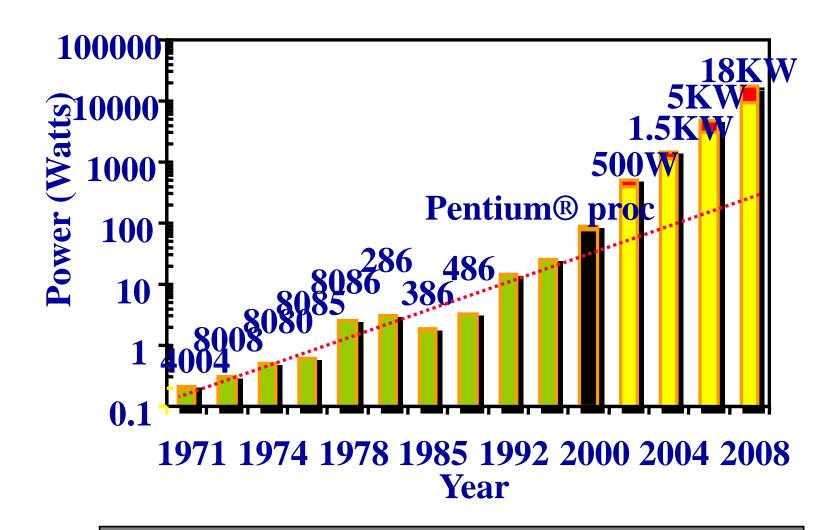
Lecture 4: Power

CSCE 6730 Advanced VLSI Systems

Instructor: Saraju P. Mohanty, Ph. D.

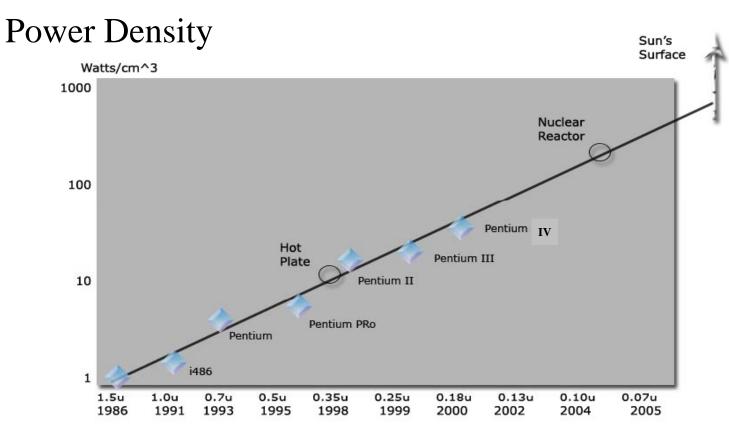
NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

Outline of the Talk

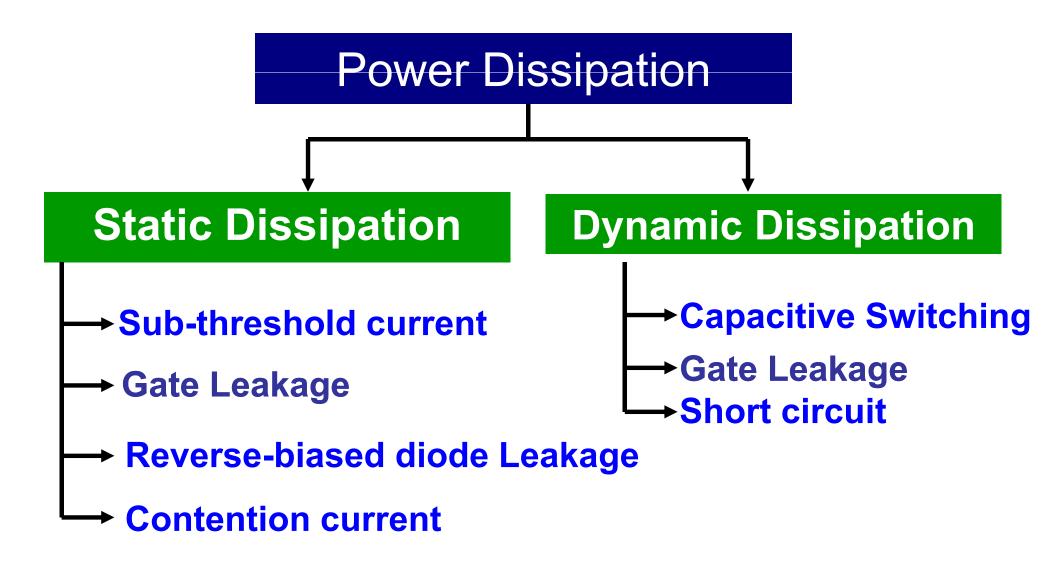

- Power and Energy
- Dynamic Power
- Static Power
- Low Power Design

Power Dissipation Trend

Power Dissipation Trend



Power delivery and dissipation will be prohibitive


Why Low-Power?

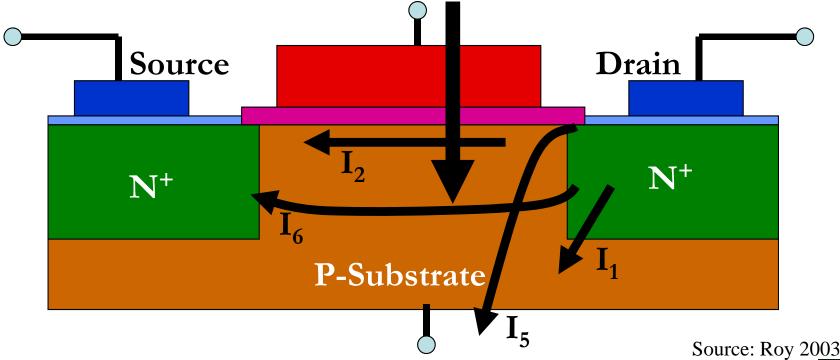
Power Trend of Intel Microprocessors

Power Dissipation in CMOS

Source: Weste and Harris 2005

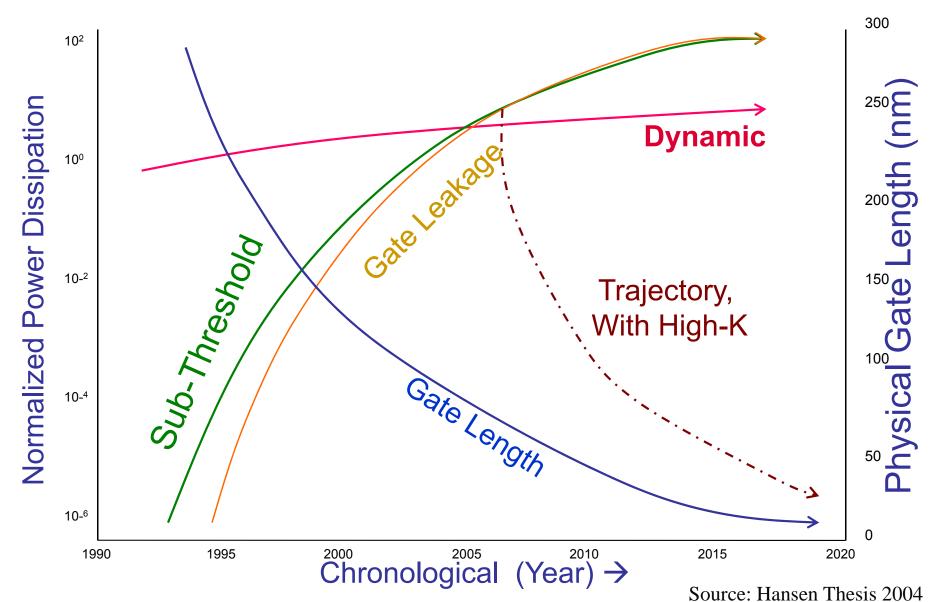
Leakages in CMOS

I₁: reverse bias pn junction (both ON & OFF)


l₂: subthreshold leakage (OFF)

I₃: Gate Leakage current (both ON & OFF)

I₄: gate current due to hot carrier injection (both ON & OFF)


I₅: gate induced drain leakage (OFF)

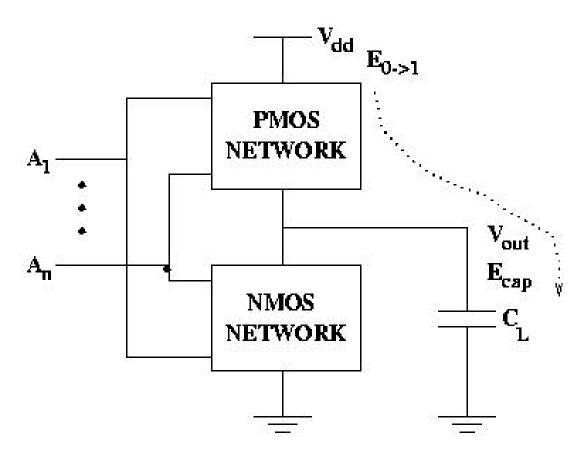
I₆: channel punch through current (OFF)

Power Dissipation Redistribution

8

Dynamic and Static Power Sources

Capacitance Switching Current: This flows to charge and discharge capacitance loads during logic changes.


Short-Circuit Current: This is the current due to the DC path between the supply and ground during output transition.

Power Dissipation in CMOS: Static

- Subthrehold Current: Sub-threshold current that arises from the inversion charges that exists at the gate voltages below the threshold voltage.
- Tunneling Current: There is a finite probability for carrier being pass through the gate oxide. This results in tunneling current thorough the gate oxide.
- Reverse-biased Diode Leakage: Reverse bias current in the parasitic diodes.
- Contention Current in Ratioed Circuits: Ratioed circuits burn power in fight between ON transistors

A general CMOS transistor circuit

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
 - •On rising output, charge Q = CLVDD is required.
 - •On falling output, charge is dumped to GND.

$$E_{0\rightarrow 1} = \int\limits_{0}^{T} P(t)dt = V_{dd} \int\limits_{0}^{T} i_{supply}(t) dt = V_{dd} \int\limits_{0}^{V_{dd}} C_{L} dV_{out} = C_{L} V_{dd}^{2}$$

$$E_{out} = \int_{0}^{T} P_{out}(t) dt = \int_{0}^{T} V_{out} i_{out}(t) dt = \int_{0}^{V_{dd}} C_{L} V_{out} dV_{out} = \frac{1}{2} C_{L} V_{dd}^{2}$$

Note:

- 1. the difference between the two is the loss
- 2. Energy doesn't depend on frequency

For N_c clock cycles energy loss:

$$\mathbf{E}_{\mathbf{N_c}} = \mathbf{C_L} \, \mathbf{V_{dd}}^2 \, \mathbf{n}(\mathbf{N_c})$$

 $\mathbf{n}(\mathbf{N_c})$: is the number of 0->1 transitions in $\mathbf{N_c}$ clock cycles

$$P_{avg} = \lim_{N \to inf} \left[\frac{E_{N_c}}{N_c} \right] f = \left[\lim_{N \to inf} \frac{n(N_c)}{N_c} \right] C_L V_{dd}^2 f$$

$$= \alpha_{0\rightarrow 1} C_L V_{dd}^2 f$$

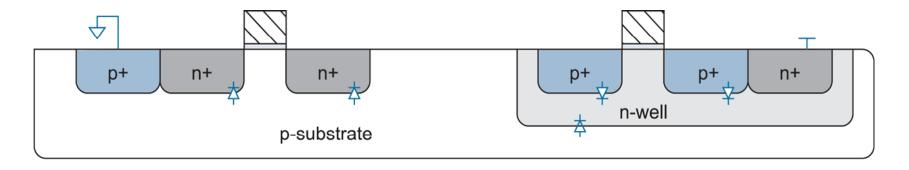
Note: Power depends on frequency

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once.
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output.

Static Power: Subthrehold Current

- In OFF state, undesired leakage current flow.
- It contributes to power dissipation of idle circuits.
- Drain-Induced-Barrier-Lowering (DIBL) an prominent effect for short channel transistors also impacts subthreshold conduction by lowering V_T.
- This current increases as the V_T increases.
- It also increases as the temperature increases.
- If v_t is the thermal voltage and I_0 is the current at V_T then the subthreshold current is :

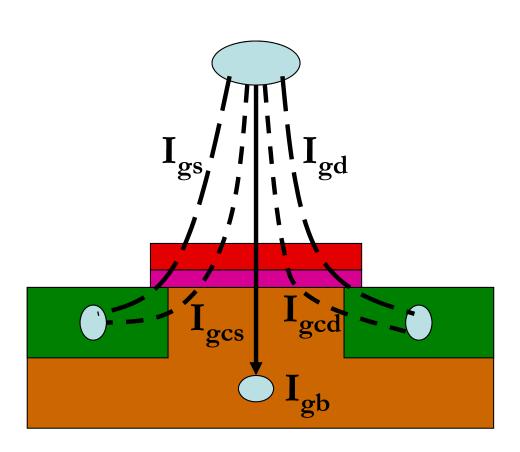

$$I_{ds} = I_0 \left[1 - \exp\left(-\frac{V_{ds}}{v_t}\right) \right] \cdot \exp\left(\frac{V_{gs} - V_{th} - V_{off}'}{nv_t}\right)$$

Static Power: Junction Leakage

- The pn junctions between diffusion, substrate and well are all junction diodes.
- These are revered biased as substrate is connected to GND and well connected to V_{dd}.
- However, reversed biased diode also conduct small amount of current.

Reverse-biased diodes in CMOS circuits

Static Power: Junction Leakage


 The reverse-biased junction current is expressed as follows: (D is not for drain, S is not for source)

$$I_D = I_S [exp (V_D/v_T) - 1]$$

- I_S depends on the doping level, the area, and perimeter of the diffusion region.
- V_D is the diode voltage e.g. V_{sb} or V_{db}.

Static Power: Tunneling

BSIM4 Model

- •There is a finite probability for carrier being pass through the gate oxide.
- •This results in tunneling current thorough the gate oxide.
- •The effect is predominate for lower oxide thickness.

Static Power: Tunneling

 The gate oxide leakage current can be expressed as follows [Kim2003, Chandrakasan2001] (K and α are experimentally derived factors).

$$I_{gate} = K W_{gate} (V_{dd} / T_{gate})^2 exp (- \alpha T_{gate} / V_{dd})$$

- Options for reduction of gate leakage power:
 - Decreasing of supply voltage V_{dd} (will play its role)
 - Increasing gate SiO₂ thickness T_{gate} (opposed to the technology trend !!)
 - Decreasing gate width W_{gate} (only linearly dependent)

Low-Power Design

Why Low Power?

Packaging costs

Chip and system poling cost

Power supply rail

Power

affects

Noise and reliability

Environmental

Battery life

Various forms of Power Profile

- Average Power
- Total Energy
- Energy-Delay-Product (EDP)
- Power-Delay-Product (PDP)
- Power-Square-Delay-Product (PSDP)
- Peak Power
- Transient Power
- Cycle Difference Power
- Peak Power Differential
- Cycle-to-Cycle Power Gradient (Fluctuation)
- and many more

Why peak power reduction?

- To maintain supply voltage levels
- To increase reliability
- To use smaller heat sinks
- To make packaging cheaper

Why Average Power/ Energy reduction?

- To increase battery life time
- To enhance noise margin
- To reduce energy costs
- To reduce use of natural resources
- To increase system reliability

Why Transience / Fluctuation Minimization ?

- To reduce power supply noise
- To reduce cross-talk and electromagnetic noise
- To increase battery efficiency
- To increase reliability

Low-power design: Key Principles

- using the lowest possible supply voltage
- using the smallest geometry, highest frequency devices, but operating them at lowest possible frequency
- using parallelism and pipelining to lower required frequency of operation
- power management by disconnecting the power source when the system is idle

Voltage, Frequency and Power Trade-offs

- Reduce Supply Voltage (V_{dd}): delay increases; performance degradation
- Reduce Clock Frequency (f): only power saving no energy
- Reduce Switching Activity (N or E(sw)): no switching no power loss !!! Not in fully under designers control. Switching activity depends on the logic function. Temporal/and spatial correlations difficult to handle.
- Reduce Physical Capacitance: done by reducing device size reduces the current drive of the transistor making the circuit slow

How much we save ?? Varying V_{dd} / f

Voltage (V _{dd})	Frequency (f)	Power (P _d)	Energy (E _d)
V _{dd}	f _{max}	P_d	E _d
V _{dd} / 2	f _{max} *	P _d /4	E _d /4
V _{dd} /2	f _{max} / 2	P _d / 8	E _d / 4
V _{dd}	f _{max} / 2	P _d /2	E _d

* Note : f_{max} Vs f

Low Power Design: Static Reduction

- Reduce static power
 - Selectively use ratioed circuits
 - Selectively use low V_t devices
 - Leakage reduction: stacked devices, body bias, low temperature

