
Lecture 3: Instructions -Lecture 3: Instructions
Language of the Computersg g p

CSCE2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books websites authors pages and otherfrom various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 2610: Computer Organization

not claim any originality.

1

What are Instructions?
• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e g MIPS Arithmetic Instructionse.g., MIPS Arithmetic Instructions
• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980'ssimilar to other architectures developed since the 1980 s
– used by NEC, Nintendo, Silicon Graphics, Sony

• Design goals:
– maximize performance
– minimize cost
– reduce design time

CSCE 2610: Computer Organization 2

Instruction Set
§2.1 In

• The repertoire of instructions of a computer
• Different computers have different instruction

ntroduc• Different computers have different instruction
sets
– But with many aspects in common

ction

But with many aspects in common
• Early computers had very simple instruction sets

– Simplified implementationSimplified implementation
• Many modern computers also have simple

instruction setsinstruction sets

CSCE 2610: Computer Organization 3

The MIPS Instruction Set
• Used as the example throughout the book

Stanford MIPS commercialized by MIPS• Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

• Large share of embedded core market
– Applications in consumer electronics, network/storage

equipment, cameras, printers, …
• Typical of many modern ISAs

– See MIPS Reference Data tear-out card, and
Appendixes B and E

CSCE 2610: Computer Organization 4

Instruction Set Architecture:
What Must be Specified?What Must be Specified?

° Instruction Format or Encoding
how is it decoded?

Instruction
Fetch

– how is it decoded?
° Location of operands and result

– where other than memory?
Instruction

Decode – where other than memory?
– how many explicit operands?
– how are memory operands located?

Operand
Fetch how are memory operands located?

– which can or cannot be in memory?
° Data type and Size

Fetch

Execute yp
° Operations

– what are supportedResult
Store

° Successor instruction
– jumps, conditions, branches

Store

Next

CSCE 2610: Computer Organization

Instruction - fetch-decode-execute is implicit!

5

Instruction Categories in MIPS
PProcessor

• Arithmetic

• Logical

• Data Transfer• Data Transfer

• Conditional Branch

• Unconditional Branch

CSCE 2610: Computer Organization 6

Design Principles
• Instruction complexity is only one variable

lower instruction count vs higher CPI (cycles per– lower instruction count vs. higher CPI (cycles per
instruction) / lower clock rate.

• Design Principles:• Design Principles:
– simplicity favors regularity

smaller is faster– smaller is faster
– make the common case fast

d d i d d i– good design demands compromise
• Instruction set architecture

– a very important abstraction indeed!

CSCE 2610: Computer Organization 7

Arithmetic Operations
§2.2 O

• Add and subtract, three operands
Two sources and one destination

O
peratio

– Two sources and one destination
add a, b, c # a gets b + c

ons of th

• All arithmetic operations have this form
• Design Principle 1: Simplicity favours regularity

he C
omg y g y

– Regularity makes implementation simpler
– Simplicity enables higher performance at lower cost

m
puter Hp y g p H

ardw
aare

CSCE 2610: Computer Organization 8

Arithmetic Example
• C code:

f = (g + h) - (i + j);

• Compiled MIPS code:• Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

CSCE 2610: Computer Organization 9

MIPS Arithmetic
• All instructions have 3 operands
• Operand order is fixed (destination first)p ()
• Example:

C code: A= B + C

MIPS d dd $ 0 $ 1 $ 2

$s0
$s1

A
B

MIPS code: add $s0, $s1, $s2
(associated with variables by compiler)

Note:

$s2 C

:Note:
(1) “$s0” represents a register
(2) Variables A B C are stored in registers $s0 $s1 and(2) Variables A, B, C are stored in registers $s0, $s1, and

$s2, respectively.

CSCE 2610: Computer Organization 10

MIPS Arithmetic
• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;;

MIPS code: add $t0, $s1, $s2
add $s0 $t0 $s3add $s0, $t0, $s3
sub $s4, $s5, $s0

Note: register $t0, $t1 are temporary registers

• Operands must be registers, only 32 registers provided
• Design Principle 2: smaller is faster. Why?

CSCE 2610: Computer Organization 11

Register Operands
§2.3 O

• Arithmetic instructions use register
operands

O
perandoperands

• MIPS has a 32 × 32-bit register file
– Use for frequently accessed data

ds of theUse for frequently accessed data
– Numbered 0 to 31
– 32-bit data called a “word”

e C
om

p

• Assembler names
– $t0, $t1, …, $t9 for temporary values

puter H
a$t0, $t , , $t9 o te po a y a ues

– $s0, $s1, …, $s7 for saved variables
• Design Principle 2: Smaller is faster

ardw
areDesign Principle 2: Smaller is faster

– c.f. main memory: millions of locations

e

CSCE 2610: Computer Organization 12

Register Operand Example
• C code:
f (g + h) (i + j);f = (g + h) - (i + j);

– f, …, j in $s0, …, $s4
• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

CSCE 2610: Computer Organization 13

Logical Operations
§2.6 L

• Instructions for bitwise manipulation

Logical

Operation C Java MIPS
Shift left << << sll

O
peratiShift left << << sll

Shift right >> >>> srl

ions

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting groups
of bits in a word

CSCE 2610: Computer Organization 14

Shift Operations

t d h t f t

• shamt: how many positions to shift

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• shamt: how many positions to shift
• Shift left logical

Shift left and fill with 0 bits– Shift left and fill with 0 bits
– sll by i bits multiplies by 2i

• Shift right logical• Shift right logical
– Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)– srl by i bits divides by 2i (unsigned only)

CSCE 2610: Computer Organization 15

AND Operations

• Useful to mask bits in a word
– Select some bits, clear others to 0

and $t0, $t1, $t2and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

CSCE 2610: Computer Organization 16

OR Operations

• Useful to include bits in a word
– Set some bits to 1, leave others unchanged

or $t0, $t1, $t2or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

CSCE 2610: Computer Organization 17

NOT Operations

• Useful to invert bits in a word
– Change 0 to 1, and 1 to 0

• MIPS has NOR 3-operand instruction
– a NOR b == NOT (a OR b)

nor $t0 $t1 $zeronor $t0, $t1, $zero
Register 0: always
read as zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

CSCE 2610: Computer Organization 18

Memory Operands
• Main memory used for composite data

– Arrays, structures, dynamic datay , , y
• To apply arithmetic operations

– Load values from memory into registers
– Store result from register to memory

• Memory is byte addressed
E h dd id tifi 8 bit b t– Each address identifies an 8-bit byte

• Words are aligned in memory
Address must be a multiple of 4– Address must be a multiple of 4

• MIPS is Big Endian
– Most-significant byte at least address of a word– Most-significant byte at least address of a word
– c.f. Little Endian: least-significant byte at least

address

CSCE 2610: Computer Organization 19

Memory Operand Example 1
• C code:
g h + A[8];g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3
• Compiled MIPS code:

– Index 8 requires offset of 32
• 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base
i tregister

CSCE 2610: Computer Organization 20

Memory Operand Example 2
• C code:
A[12] h + A[8];A[12] = h + A[8];

– h in $s2, base address of A in $s3
• Compiled MIPS code:

– Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

CSCE 2610: Computer Organization 21

General Purpose Registers (GPRs) Dominate

° 1975 1995 ll hi l i t° 1975-1995 all machines use general purpose registers

° Advantages of registers
i t f t th• registers are faster than memory

• registers are easier for a compiler to use
• registers can hold variables• registers can hold variables

- memory traffic is reduced, so program is speeded up
(since registers are faster than memory)
code density improves (since register named with fewer bits- code density improves (since register named with fewer bits
than memory location)

CSCE 2610: Computer Organization 22

Registers vs. Memory
• In MIPS processor, arithmetic instructions operands must

be registersbe registers.
• Registers are faster to access than memory
• Only 32 registers provided• Only 32 registers provided
• Compiler associates variables with registers
• What about programs with lots of variables?• What about programs with lots of variables?

Solution: Spilling Registers
Excessive variables are stored in MemoryExcessive variables are stored in Memory
and moved from memory to register file
by load and store instructionsby load and store instructions.

CSCE 2610: Computer Organization 23

MIPS: Software conventions for Registersg
0 zero constant 0 16 s0 callee saves

1 at reserved for assembler

2 v0 expression evaluation &

3 1 f ti lt

. . . (caller can clobber)

23 s7

24 t8 t (t’d)3 v1 function results

4 a0 arguments

5 a1

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel5 a1

6 a2

7 a3

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area7 a3

8 t0 temporary: caller saves

(callee can clobber)

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer. . . (callee can clobber)

15 t7

30 fp frame pointer

31 ra Return Address (HW)
Plus a 3-deep stack of mode bits.

CSCE 2610: Computer Organization

p

24

Architecture Styles …
According to the operand(s) locations..

• Accumulator-style: One of the operands is in an implicit registery p p g
known as accumulator

• Load-store architecture: Both operands must be in the registersp g

• Register-memory: One operand in register, the other in Memory

• Memory-Memory: Both operands can be in Memory

• Stack-style: Stack is used to evaluate expressions

CSCE 2610: Computer Organization 25

Stored Program Concept
• Instructions are bits
• Programs are stored in memory g y

— to be read or written just like data

Processor Memory
memory for data, programs,

compilers, editors, etc.compilers, editors, etc.

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register.
– Bits in the register "control" the subsequent actions.
– Fetch the “next” instruction and continue.

CSCE 2610: Computer Organization 26

Stored Program Computers

• Instructions represented in
binary just like data

The BIG Picture
binary, just like data

• Instructions and data stored
in memoryin memory

• Programs can operate on
programsprograms
– e.g., compilers, linkers, …

• Binary compatibility allows• Binary compatibility allows
compiled programs to work
on different computerson different computers
– Standardized ISAs

CSCE 2610: Computer Organization 27

Memory Organization
• Viewed as a large, single-dimension array, with an

address.
• A memory address is an index into the array.
• "Byte addressing" means that the index points to a byte of

memory.

0
1
2

8 bits of data

8 bits of data

8 bits of data

3
4
5

8 bits of data

8 bits of data

5
6
...

8 bits of data

8 bits of data

CSCE 2610: Computer Organization 28

Memory Organization
• Bytes are nice, but most data items use larger "words”.
• For MIPS, a word is 32 bits or 4 bytes., y

0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

• 232 bytes with byte addresses from 0 to 232 1

12
...

• 232 bytes with byte addresses from 0 to 232-1.
• 230 words with byte addresses 0, 4, 8, ... 232-4.
• Words are aligned i e what are the least 2 significantWords are aligned i.e., what are the least 2 significant

bits of a word address?

CSCE 2610: Computer Organization 29

Memory Addresses and Contents

• Address of 3rd element is 2 and
the al e of Memor [2] is 10the value of Memory[2] is 10.

• Arithmetic operations occurs only on registers in MIPS.
• Data transfer instructions needed to transfer between

memory and registers.
• Two types:• Two types:

• load word : from memory to register
• store word : from register to memory

CSCE 2610: Computer Organization 30

MIPS Memory Addresses and Contents

• Address of 3rd element is 8 and
the value of Memory[8] is 10.y[]

• Byte addressing in array: Base
address + Offset.

• Offset = 4 * array index• Offset = 4 * array index.

• In MIPS, word addresses start at multiple of 4.
Thi i li t t i ti• This is alignment restriction.

CSCE 2610: Computer Organization 31

Addressing Objects: Endianessg j
• Big Endian: address of most significant byte

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little Endian byte 0

msb lsb
3 2 1 0

y

0 1 2 3
big Endian byte 0

CSCE 2610: Computer Organization 32

Constants or Immediate Operands
• Small constants are used quite frequently (50% of

operands).p)
e.g.,
A = A + 15;
B = B - 18;
counter = counter + 1;

I t t t ill fit i 16 bit ll t d• In most programs, constants will fit in 16 bits allocated
for immediate field.

CSCE 2610: Computer Organization 33

Immediate Operands
• Constant data specified in an instruction
addi $s3 $s3 4addi $s3, $s3, 4

• No subtract immediate instruction
– Just use a negative constant
addi $s2, $s1, -1

• Design Principle 3: Make the common case fast
– Small constants are common
– Immediate operand avoids a load instruction

CSCE 2610: Computer Organization 34

The Constant Zero
• MIPS register 0 ($zero) is the constant 0

Cannot be overwritten– Cannot be overwritten
• Useful for common operations

E b t i t– E.g., move between registers
add $t2, $s1, $zero

CSCE 2610: Computer Organization 35

Unsigned Binary Integers
§2.4 S

• Given an n-bit number

igned a

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

and U
ns

 Range: 0 to +2n – 1
Example

signed N

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

0 + + 1×23 + 0×22 +1×21 +1×20

N
um

ber= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

U i 32 bit

rs

 Using 32 bits
 0 to +4,294,967,295

CSCE 2610: Computer Organization 36

2s-Complement Signed Integers
• Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1
Example Example
 1111 1111 1111 1111 1111 1111 1111 11002

1×231 + 1×230 + + 1×22 +0×21 +0×20= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

U i 32 bit Using 32 bits
 –2,147,483,648 to +2,147,483,647

CSCE 2610: Computer Organization 37

2s-Complement Signed Integers
• Bit 31 is sign bit

– 1 for negative numbers1 for negative numbers
– 0 for non-negative numbers

• –(–2n – 1) can’t be represented(2) can t be represented
• Non-negative numbers have the same unsigned

and 2s-complement representationand 2s complement representation
• Some specific numbers

– 0: 0000 0000 00000: 0000 0000 … 0000
– –1: 1111 1111 … 1111
– Most-negative: 1000 0000 … 0000Most negative: 1000 0000 … 0000
– Most-positive: 0111 1111 … 1111

CSCE 2610: Computer Organization 38

Signed Negation

• Complement and add 1
– Complement means 1 → 0, 0 → 1

1

11111...111xx 2

x1x

 Example: negate +2 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

CSCE 2610: Computer Organization 39

Sign Extension
• Representing a number using more bits

– Preserve the numeric valuePreserve the numeric value
• In MIPS instruction set

– addi: extend immediate valueaddi: extend immediate value
– lb, lh: extend loaded byte/halfword
– beq, bne: extend the displacementq, p

• Replicate the sign bit to the left
– c.f. unsigned values: extend with 0sc.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
– +2: 0000 0010 => 0000 0000 0000 00102: 0000 0010 0000 0000 0000 0010
– –2: 1111 1110 => 1111 1111 1111 1110

CSCE 2610: Computer Organization 40

Load & Store Instructions by Example
• Load and store instructions are used for data movement between

memory and registers in the register file.
• Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3) # $t0 = A[8]

$ $ $ $ $add $t0, $s2, $t0# $t0 = h + $t0
sw $t0, 32($s3) # A[8] = $t0

Note: (1) lw = load word, sw = store word
(2) $t0 is a temporary register that accumulates the final result
(3) Register $s2 holds variable “h”
(4) Register $s3 is the index register that holds the start(4) Register $s3 is the index register that holds the start

address of the array A i.e. the location where array A starts.
• Store word has destination last

R b i h i d i !• Remember arithmetic operands are registers, not memory!

CSCE 2610: Computer Organization 41

So far we’ve learned:
• MIPS

— loading words but addressing bytesg g y
— arithmetic on registers only

• Instruction Meaning

add $s1 $s2 $s3 $s1 = $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]lw $s1, 100($s2) $s1 Memory[$s2 100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

CSCE 2610: Computer Organization 42

Conditional Operations
§2.7 In

• Branch to a labeled instruction if a condition is
true

nstructitrue
– Otherwise, continue sequentially

• beq rs, rt, L1

ons forbeq rs, rt, L1
– if (rs == rt) branch to instruction labeled L1;

• bne rs, rt, L1

r M
akinbne rs, rt, L1

– if (rs != rt) branch to instruction labeled L1;
• j L1

ng D
ecisj L1

– unconditional jump to instruction labeled L1

sions

CSCE 2610: Computer Organization 43

Compiling If Statements
• C code:
if (i j) f hif (i==j) f = g+h;
else f = g-h;

– f, g, … in $s0, $s1, …
• Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

A bl l l t ddAssembler calculates addresses
CSCE 2610: Computer Organization 44

Compiling Loop Statements
• C code:
while (save[i] == k) i += 1;while (save[i] == k) i += 1;

– i in $s3, k in $s5, address of save in $s6
C il d MIPS d• Compiled MIPS code:
Loop: sll $t1, $s3, 2

dd $ 1 $ 1 $ 6add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0 $s5 Exitbne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

i Exit: …

CSCE 2610: Computer Organization 45

Basic Blocks

• A basic block is a sequence of instructions with
– No embedded branches (except at end)
– No branch targets (except at beginning)

 A compiler identifies basic A compiler identifies basic
blocks for optimization
An advanced processor can An advanced processor can
accelerate execution of basic
blocksblocks

CSCE 2610: Computer Organization 46

More Conditional Operations
• Set result to 1 if a condition is true

Otherwise set to 0– Otherwise, set to 0
• slt rd, rs, rt

if (t) d 1 l d 0– if (rs < rt) rd = 1; else rd = 0;
• slti rt, rs, constant

– if (rs < constant) rt = 1; else rt = 0;
• Use in combination with beq, bneq

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

CSCE 2610: Computer Organization 47

Branch Instruction Design
• Why not blt, bge, etc?

Hardware for < ≥ slower than ≠• Hardware for <, ≥, … slower than =, ≠
– Combining with branch involves more work per

instruction requiring a slower clockinstruction, requiring a slower clock
– All instructions penalized!
b d b th• beq and bne are the common case

• This is a good design compromise

CSCE 2610: Computer Organization 48

Control Flow
• We have: beq, bne, what about Branch-if-less-than?
• New instruction:New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
can now build general control structures— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registersthere are policy of use conventions for registers

CSCE 2610: Computer Organization 249

Signed vs. Unsigned
• Signed comparison: slt, slti

Unsigned comparison: sltu sltui• Unsigned comparison: sltu, sltui
• Example

– $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
– $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
– slt $t0, $s0, $s1 # signed

• –1 < +1 $t0 = 1
– sltu $t0, $s0, $s1 # unsigned

• +4,294,967,295 > +1 $t0 = 0

CSCE 2610: Computer Organization 50

Instructions for Control flow
• Decision making instructions

– alter the control flow,alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:
bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;
bne $s0, $s1, Label
add $s3 $s0 $s1add $s3, $s0, $s1
Label:

CSCE 2610: Computer Organization 51

Unconditional Branch: jump instruction

• MIPS unconditional branch instructions:
j l b lj label

• Jump Instruction Format:
op 26 bit address

6 bits 26 bits

• Example:

if (i!=j) beq $s4 $s5 Lab1if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

CSCE 2610: Computer Organization 52

Representing Instructions
§2.5 R

• Instructions are encoded in binary
Called machine code

R
epresen– Called machine code

• MIPS instructions
E d d 32 bit i t ti d

nting In

– Encoded as 32-bit instruction words
– Small number of formats encoding operation code

(opcode) register n mbers

nstructio(opcode), register numbers, …
– Regularity!

R i t b

ons in t

• Register numbers
– $t0 – $t7 are reg’s 8 – 15

the C
om

– $t8 – $t9 are reg’s 24 – 25
– $s0 – $s7 are reg’s 16 – 23

m
puter

CSCE 2610: Computer Organization 53

MIPS R-format Instructions

op rs rt rd shamt funct

• Instruction fields

p
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• Instruction fields
– op: operation code (opcode)

rs: first source register number– rs: first source register number
– rt: second source register number

rd: destination register number– rd: destination register number
– shamt: shift amount (00000 for now)

f t f ti d (t d d)– funct: function code (extends opcode)

CSCE 2610: Computer Organization 54

R-format Example

op rs rt rd shamt functp
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 320 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

CSCE 2610: Computer Organization 55

Hexadecimal

• Base 16
C t t ti f bit t i– Compact representation of bit strings

– 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

E l 8 6420 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

CSCE 2610: Computer Organization 56

Data Types: Binary to Hexadecimal

e c a 8 6 4 2 0

1100 1010 10001110 0100 00100110 0000

CSCE 2610: Computer Organization 57

Data Types: Hexadecimal to Binary

0011 0101 01110001 1011 11011001 11110011 0101 01110001 1011 11011001 1111

1 3 5 7 9 b d f

CSCE 2610: Computer Organization 58

Machine Language
• Instructions, like registers and words of data, are also 32 bits long

– Example: add $t0, $s1, $s2
registers have numbers t0 8 s1 17 s2 18– registers have numbers, t0=8, s1=17, s2=18

• Instruction Format (R-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op: operation of the instruction
rs: the first register source operand
rt: the second register source operandrt: the second register source operand
shamt: shift amount (we will look at this later..)
funct: function; this field selects the variant of the operation in the op field

CSCE 2610: Computer Organization 59

MIPS I-format Instructions

op rs rt constant or address

• Immediate arithmetic and load/store instructions

p
6 bits 5 bits 5 bits 16 bits

– rt: destination or source register number
– Constant: –215 to +215 – 1
– Address: offset added to base address in rs

• Design Principle 4: Good design demands goodg p g g
compromises
– Different formats complicate decoding, but allow 32-bit

finstructions uniformly
– Keep formats as similar as possible

CSCE 2610: Computer Organization 60

Machine Language
• Consider the load-word and store-word instructions,

– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructionsyp
– other format was R-type for register

Example: lw $t0, 32($s2)p $, ($)
35 18 9 32

6 bits 5 bits 5 bits 16 bits

op rs rt 16 bit number
• Where's the compromise?

CSCE 2610: Computer Organization 61

MIPS Instructions: So far …
• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
b $ 1 $ 2 $ 3 $ 1 $ 2 $ 3sub $s1,$s2,$s3 $s1 = $s2 – $s3

lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1 100($s2) Memory[$s2+100] = $s1sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 != $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5q
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

R
6 bits 5 bits 6 bits5 bits 5 bits 5 bits

op rs rt 16 bit address

op 26 bit address

I

J

CSCE 2610: Computer Organization 62

Generic Examples of Instruction
Format Widths

Variable: …

Fi d

…

Fixed:

Hybrid:

CSCE 2610: Computer Organization 63

Summary of Instruction Formatsy

• If code size is most important use variable lengthIf code size is most important, use variable length
instructions.

If f i t i t t fi d l th• If performance is most important, use fixed length
instructions.

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb MIPS16); per procedure decideinstructions (Thumb, MIPS16); per procedure decide
performance or density.

CSCE 2610: Computer Organization 64

Assembly versus Machine Languagey g g

• Assembly provides convenient symbolic representationsse b y p o des co e e t sy bo c ep ese tat o
– much easier than writing down numbers
– e.g., destination firste.g., destination first

• Machine language is the underlying reality
– e g destination is no longer firste.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e g “move $t0 $t1” exists only in Assemblye.g., move $t0, $t1 exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real• When considering performance you should count real
instructions.

CSCE 2610: Computer Organization 65

Other Issues
• Several other issues can be considered:

support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointersmanipulating strings and pointers
interrupts and exceptions
system calls and conventionssystem calls and conventions

• We've focused on architectural issues
– basics of MIPS assembly language and machine codebasics of MIPS assembly language and machine code.
– we’ll build a processor to execute these instructions.

CSCE 2610: Computer Organization 66

Procedure Calling
§2.8 S

• Steps required
1 Place parameters in registers

upporti1. Place parameters in registers
2. Transfer control to procedure
3 Acquire storage for procedure

ing Proc3. Acquire storage for procedure
4. Perform procedure’s operations
5 Place res lt in register for caller

cedures

5. Place result in register for caller
6. Return to place of call

s in C
omm

puter H
ardw

are

CSCE 2610: Computer Organization 67

Register Usage
• $a0 – $a3: arguments (reg’s 4 – 7)
• $v0 $v1: result values (reg’s 2 and 3)• $v0, $v1: result values (reg s 2 and 3)
• $t0 – $t9: temporaries

Can be overwritten by callee– Can be overwritten by callee
• $s0 – $s7: saved

Must be saved/restored by callee– Must be saved/restored by callee
• $gp: global pointer for static data (reg 28)

$ t k i t (29)• $sp: stack pointer (reg 29)
• $fp: frame pointer (reg 30)
• $ra: return address (reg 31)

CSCE 2610: Computer Organization 68

Procedure Call Instructions
• Procedure call: jump and link
jal ProcedureLabeljal ProcedureLabel

– Address of following instruction put in $ra
J t t t dd– Jumps to target address

• Procedure return: jump register
jr $ra

– Copies $ra to program counterp p g
– Can also be used for computed jumps

• e.g., for case/switch statements

CSCE 2610: Computer Organization 69

Leaf Procedure Example
• C code:
int leaf example (int g h i j)int leaf_example (int g, h, i, j)
{

i fint f;
f = (g + h) - (i + j);

 freturn f;
}

– Arguments g, …, j in $a0, …, $a3
– f in $s0 (hence, need to save $s0 on stack)
– Result in $v0

CSCE 2610: Computer Organization
70

Leaf Procedure Example
MIPS d• MIPS code:
leaf_example:

ddi $ $ 12 # Make room is stack for 3 itemaddi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)

Make room is stack for 3 item

Save $t1, $t0, $s0 on stacksw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1 $a2 $a3 # Procedure bodyadd $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero

$ $

Procedure body

Result, Return value of f
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1 8($sp)

Restore $t1, $t0, $s0
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra # Return to the calling routine

Adjust stack to delete 3 item
g

CSCE 2610: Computer Organization 71

Stack Pointer

Before During After

• Values of stack pointer and stack for procedure call.
• The stack pointer always points to the “top” of theThe stack pointer always points to the top of the

stack, or the last word in the stack in this drawing.

CSCE 2610: Computer Organization 72

Non-Leaf Procedures
• Procedures that call other procedures

For nested call caller needs to save on the• For nested call, caller needs to save on the
stack:

It t dd– Its return address
– Any arguments and temporaries needed after the call

• Restore from the stack after the call

CSCE 2610: Computer Organization 73

Non-Leaf Procedure Example
• C code:
int fact (int n)int fact (int n)
{
if (n < 1) return 1;if (n < 1) return 1;
else return n * fact(n - 1);

}}

– Argument n in $a0
R lt i $ 0– Result in $v0

CSCE 2610: Computer Organization 74

Non-Leaf Procedure Example
• MIPS code:

fact:fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument$, ($ p) g
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
ddi $ $ 8 # 2 i f kaddi $sp, $sp, 8 # pop 2 items from stack

mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return to the caller

CSCE 2610: Computer Organization
75

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B
B:

A

A B
CALL C

C: A B C
RET

RET
A B

RET
A

• Some machines provide a memory stack as part of thep y p
architecture (e.g., VAX)

• Sometimes stacks are implemented via software convention (e.g.,
MIPS)

CSCE 2610: Computer Organization

)

76

Frame and Stack Pointer

Before During After
• The frame pointer points to the first word in the frame ofThe frame pointer points to the first word in the frame of

a procedure.
• Frame pointer is a saved argument register.g g
• The stack is adjusted to make room for all saved

registers and any memory-resident local variables.

CSCE 2610: Computer Organization 77

Memory Layout

• Text: program code
St ti d t l b l• Static data: global
variables

t ti i bl i C– e.g., static variables in C,
constant arrays and strings

– $gp initialized to address$gp initialized to address
allowing ±offsets into this
segment

• Dynamic data: Heap
– e.g., malloc in C, new in

JJava
• Stack: automatic storage

CSCE 2610: Computer Organization 78

Overview of MIPS
• simple instructions all 32 bits wide
• very structured no unnecessary baggagevery structured, no unnecessary baggage
• only three instruction formats

6 bits 5 bits 6 bits5 bits 5 bits 5 bits
op rs rt rd shamt funct

op rs rt 16 bit address

R

I

op 26 bit addressJ

• rely on compiler to achieve performance
— what are the compiler's goals?what are the compiler s goals?

• help compiler where we can.

CSCE 2610: Computer Organization 79

Branch Addressing

• Branch instructions specify
– Opcode, two registers, target address

• Most branch targets are near branch
– Forward or backward

t t t ddop rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4g
 PC already incremented by 4 by this time

CSCE 2610: Computer Organization 80

Jump Addressing

• Jump (j and jal) targets could be anywhere in
t t ttext segment
– Encode full address in instruction

op addressop address
6 bits 26 bits

(P d)Di t j dd i (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

CSCE 2610: Computer Organization 81

Target Addressing Example

• Loop code from earlier example
– Assume Loop at location 80000

Loop: sll $t1 $s3 2 80000 0 0 19 9 4 0Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0 0($t1) 80008 35 9 8 0lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024Exit: … 80024

CSCE 2610: Computer Organization 82

Branching Far Away
• If branch target is too far to encode with 16-bit

offset assembler rewrites the codeoffset, assembler rewrites the code
• Example

b $ 0 $ 1 1beq $s0,$s1, L1

↓
b $ 0 $ 1 2bne $s0,$s1, L2
j L1

L2:L2: …

CSCE 2610: Computer Organization 83

Addressing Mode Summary

CSCE 2610: Computer Organization 84

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

30230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1 $s2 25 if ($s1 == $s2) go to Equal test; PC relative branchbranch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne
else $s1 = 0

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional j mp j d li k jal 2500 $ra PC + 4 go to 10000 F d ll

CSCE 2610: Computer Organization

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

85

