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What are Instructions?
• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e g MIPS Arithmetic Instructionse.g., MIPS Arithmetic Instructions
• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980'ssimilar to other architectures developed since the 1980 s
– used by NEC, Nintendo, Silicon Graphics, Sony

• Design goals:  
– maximize performance
– minimize cost
– reduce design time
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Instruction Set
§2.1 In

• The repertoire of instructions of a computer
• Different computers have different instruction

ntroduc• Different computers have different instruction
sets
– But with many aspects in common

ction

But with many aspects in common
• Early computers had very simple instruction sets

– Simplified implementationSimplified implementation
• Many modern computers also have simple

instruction setsinstruction sets

CSCE 2610: Computer Organization 3



The MIPS Instruction Set
• Used as the example throughout the book

Stanford MIPS commercialized by MIPS• Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

• Large share of embedded core market
– Applications in consumer electronics, network/storage

equipment, cameras, printers, …
• Typical of many modern ISAs

– See MIPS Reference Data tear-out card, and
Appendixes B and E
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Instruction Set Architecture: 
What Must be Specified?What Must be Specified?

° Instruction Format or Encoding
how is it decoded?

Instruction
Fetch

– how is it decoded?
° Location of operands and result

– where other than memory?
Instruction

Decode – where other than memory?
– how many explicit operands?
– how are memory operands located?

Operand
Fetch how are memory operands located?

– which can or cannot be in memory?
° Data type and Size

Fetch

Execute yp
° Operations

– what are supportedResult
Store

° Successor instruction
– jumps, conditions, branches

Store

Next
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Instruction Categories in MIPS 
PProcessor

• Arithmetic

• Logical

• Data Transfer• Data Transfer

• Conditional Branch

• Unconditional Branch
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Design Principles
• Instruction complexity is only one variable

lower instruction count vs higher CPI (cycles per– lower instruction count vs. higher CPI (cycles per
instruction) / lower clock rate.

• Design Principles:• Design Principles:
– simplicity favors regularity

smaller is faster– smaller is faster
– make the common case fast

d d i d d i– good design demands compromise
• Instruction set architecture

– a very important abstraction indeed!
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Arithmetic Operations
§2.2 O

• Add and subtract, three operands
Two sources and one destination

O
peratio

– Two sources and one destination
add a, b, c # a gets b + c

ons of th

• All arithmetic operations have this form
• Design Principle 1: Simplicity favours regularity

he C
omg y g y

– Regularity makes implementation simpler
– Simplicity enables higher performance at lower cost

m
puter Hp y g p H

ardw
aare
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Arithmetic Example
• C code:

f = (g + h) - (i + j);

• Compiled MIPS code:• Compiled MIPS code:

add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1

CSCE 2610: Computer Organization 9



MIPS Arithmetic
• All instructions have 3 operands
• Operand order is fixed (destination first)p ( )
• Example:

C code: A= B + C

MIPS d dd $ 0 $ 1 $ 2

$s0
$s1

A
B

MIPS code: add $s0, $s1, $s2
(associated with variables by compiler)

Note:

$s2 C

:Note:  
(1) “$s0”  represents a register
(2) Variables A B C are stored in registers $s0 $s1 and(2)  Variables A, B, C are stored in registers $s0, $s1, and 

$s2,  respectively.
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MIPS Arithmetic
• Design Principle:  simplicity favors regularity.    Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;;

MIPS code: add $t0, $s1, $s2
add $s0 $t0 $s3add $s0, $t0, $s3
sub $s4, $s5, $s0

Note: register $t0, $t1 are temporary registers

• Operands must be registers, only 32 registers provided
• Design Principle 2:  smaller is faster.      Why?
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Register Operands
§2.3 O

• Arithmetic instructions use register
operands

O
perandoperands

• MIPS has a 32 × 32-bit register file
– Use for frequently accessed data

ds of theUse for frequently accessed data
– Numbered 0 to 31
– 32-bit data called a “word”

e C
om

p

• Assembler names
– $t0, $t1, …, $t9 for temporary values

puter H
a$t0, $t , , $t9 o te po a y a ues

– $s0, $s1, …, $s7 for saved variables
• Design Principle 2: Smaller is faster

ardw
areDesign Principle 2: Smaller is faster

– c.f. main memory: millions of locations

e
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Register Operand Example
• C code:
f (g + h) (i + j);f = (g + h) - (i + j);

– f, …, j in $s0, …, $s4
• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
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Logical Operations
§2.6 L

• Instructions for bitwise manipulation

Logical 

Operation C Java MIPS
Shift left << << sll

O
peratiShift left << << sll

Shift right >> >>> srl

ions

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting groups 
of bits in a word
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Shift Operations

t d h t f t

• shamt: how many positions to shift

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• shamt: how many positions to shift
• Shift left logical

Shift left and fill with 0 bits– Shift left and fill with 0 bits
– sll by i bits multiplies by 2i

• Shift right logical• Shift right logical
– Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)– srl by i bits divides by 2i (unsigned only)
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AND Operations

• Useful to mask bits in a word
– Select some bits, clear others to 0

and $t0, $t1, $t2and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0
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OR Operations

• Useful to include bits in a word
– Set some bits to 1, leave others unchanged

or $t0, $t1, $t2or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0
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NOT Operations

• Useful to invert bits in a word
– Change 0 to 1, and 1 to 0

• MIPS has NOR 3-operand instruction
– a NOR b == NOT ( a OR b )

nor $t0 $t1 $zeronor $t0, $t1, $zero
Register 0: always 
read as zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

CSCE 2610: Computer Organization 18



Memory Operands
• Main memory used for composite data

– Arrays, structures, dynamic datay , , y
• To apply arithmetic operations

– Load values from memory into registers
– Store result from register to memory

• Memory is byte addressed
E h dd id tifi 8 bit b t– Each address identifies an 8-bit byte

• Words are aligned in memory
Address must be a multiple of 4– Address must be a multiple of 4

• MIPS is Big Endian
– Most-significant byte at least address of a word– Most-significant byte at least address of a word
– c.f. Little Endian: least-significant byte at least

address
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Memory Operand Example 1
• C code:
g h + A[8];g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3
• Compiled MIPS code:

– Index 8 requires offset of 32
• 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base 
i tregister
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Memory Operand Example 2
• C code:
A[12] h + A[8];A[12] = h + A[8];

– h in $s2, base address of A in $s3
• Compiled MIPS code:

– Index 8 requires offset of 32
lw $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw $t0, 48($s3)    # store word
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General Purpose Registers (GPRs) Dominate

° 1975 1995 ll hi l i t° 1975-1995  all machines use general purpose registers

° Advantages of registers
i t f t th• registers are faster than memory

• registers are easier for a compiler to use
• registers can hold variables• registers can hold variables

- memory traffic is reduced, so program is speeded up 
(since registers are faster than memory)
code density improves (since register named with fewer bits- code density improves (since register named with fewer bits 
than memory location)
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Registers vs. Memory
• In MIPS processor, arithmetic instructions operands must

be registersbe registers.
• Registers are faster to access than memory
• Only 32 registers provided• Only 32 registers provided
• Compiler associates variables with registers
• What about programs with lots of variables?• What about programs with lots of variables?

Solution: Spilling Registers
Excessive variables are stored in MemoryExcessive variables are stored in Memory
and moved from memory to register file
by load and store instructionsby load and store instructions.
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MIPS: Software conventions for Registersg
0 zero constant 0 16 s0 callee saves

1 at reserved for assembler

2 v0 expression evaluation &

3 1 f ti lt

. . . (caller can clobber)

23 s7

24 t8 t ( t’d)3 v1 function results

4 a0 arguments

5 a1

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel5 a1

6 a2

7 a3

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area7 a3

8 t0 temporary: caller saves

(callee can clobber)

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer. . . (callee can clobber)

15 t7

30 fp frame pointer

31 ra Return Address (HW)
Plus a 3-deep stack of mode bits.

CSCE 2610: Computer Organization
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Architecture Styles …
According to the operand(s) locations..

• Accumulator-style: One of the operands is in an implicit registery p p g
known as accumulator

• Load-store architecture: Both operands must be in the registersp g

• Register-memory: One operand in register, the other in Memory

• Memory-Memory: Both operands can be in Memory

• Stack-style: Stack is used to evaluate expressions
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Stored Program Concept
• Instructions are bits
• Programs are stored in memory g y

— to be read or written just like data

Processor Memory
memory for data, programs, 

compilers, editors, etc.compilers, editors, etc.

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register.
– Bits in the register "control" the subsequent actions.
– Fetch the “next” instruction and continue.
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Stored Program Computers

• Instructions represented in
binary just like data

The BIG Picture
binary, just like data

• Instructions and data stored
in memoryin memory

• Programs can operate on
programsprograms
– e.g., compilers, linkers, …

• Binary compatibility allows• Binary compatibility allows
compiled programs to work
on different computerson different computers
– Standardized ISAs
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Memory Organization
• Viewed as a large, single-dimension array, with an

address.
• A memory address is an index into the array.
• "Byte addressing" means that the index points to a byte of

memory.

0
1
2

8 bits of data

8 bits of data

8 bits of data

3
4
5

8 bits of data

8 bits of data

5
6
...

8 bits of data

8 bits of data
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Memory Organization
• Bytes are nice, but most data items use larger "words”.
• For MIPS, a word is 32 bits or 4 bytes., y

0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

• 232 bytes with byte addresses from 0 to 232 1

12
...

• 232 bytes with byte addresses from 0 to 232-1.
• 230 words with byte addresses 0, 4, 8, ... 232-4.
• Words are aligned i e what are the least 2 significantWords are aligned i.e., what are the least 2 significant

bits of a word address?
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Memory Addresses and Contents

• Address of 3rd element is 2 and
the al e of Memor [2] is 10the value of Memory[2] is 10.

• Arithmetic operations occurs only on registers in MIPS.
• Data transfer instructions needed to transfer between

memory and registers.
• Two types:• Two types:

• load word : from memory to register
• store word : from register to memory
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MIPS Memory Addresses and Contents

• Address of 3rd element is 8 and
the value of Memory[8] is 10.y[ ]

• Byte addressing in array: Base
address + Offset.

• Offset = 4 * array index• Offset = 4 * array index.

• In MIPS, word addresses start at multiple of 4.
Thi i li t t i ti• This is alignment restriction.
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Addressing Objects: Endianessg j
• Big Endian: address of most significant byte

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little Endian byte 0

msb lsb
3          2          1           0

y

0          1          2           3
big Endian byte 0
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Constants or Immediate Operands
• Small constants are used quite frequently (50% of

operands).p )
e.g.,
A = A + 15;
B = B - 18;
counter = counter + 1;

I t t t ill fit i 16 bit ll t d• In most programs, constants will fit in 16 bits allocated
for immediate field.
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Immediate Operands
• Constant data specified in an instruction
addi $s3 $s3 4addi $s3, $s3, 4

• No subtract immediate instruction
– Just use a negative constant
addi $s2, $s1, -1

• Design Principle 3: Make the common case fast
– Small constants are common
– Immediate operand avoids a load instruction
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The Constant Zero
• MIPS register 0 ($zero) is the constant 0

Cannot be overwritten– Cannot be overwritten
• Useful for common operations

E b t i t– E.g., move between registers
add $t2, $s1, $zero
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Unsigned Binary Integers
§2.4 S

• Given an n-bit number

igned a

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

and U
ns

 Range: 0 to +2n – 1
Example

signed N

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

0 + + 1×23 + 0×22 +1×21 +1×20

N
um

ber= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

U i 32 bit

rs

 Using 32 bits
 0 to +4,294,967,295
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2s-Complement Signed Integers
• Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: –2n – 1 to +2n – 1 – 1
Example Example
 1111 1111 1111 1111 1111 1111 1111 11002

1×231 + 1×230 + + 1×22 +0×21 +0×20= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

U i 32 bit Using 32 bits
 –2,147,483,648 to +2,147,483,647
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2s-Complement Signed Integers
• Bit 31 is sign bit

– 1 for negative numbers1 for negative numbers
– 0 for non-negative numbers

• –(–2n – 1) can’t be represented( 2 ) can t be represented
• Non-negative numbers have the same unsigned

and 2s-complement representationand 2s complement representation
• Some specific numbers

– 0: 0000 0000 00000: 0000 0000 … 0000
– –1: 1111 1111 … 1111
– Most-negative: 1000 0000 … 0000Most negative: 1000 0000 … 0000
– Most-positive: 0111 1111 … 1111
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Signed Negation

• Complement and add 1
– Complement means 1 → 0, 0 → 1

1

11111...111xx 2 

x1x 

 Example: negate +2 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102
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Sign Extension
• Representing a number using more bits

– Preserve the numeric valuePreserve the numeric value
• In MIPS instruction set

– addi: extend immediate valueaddi: extend immediate value
– lb, lh: extend loaded byte/halfword
– beq, bne: extend the displacementq, p

• Replicate the sign bit to the left
– c.f. unsigned values: extend with 0sc.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
– +2: 0000 0010 => 0000 0000 0000 00102: 0000 0010 0000 0000 0000 0010
– –2: 1111 1110 => 1111 1111 1111 1110
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Load & Store Instructions by Example
• Load and store instructions are used for data movement between

memory and registers in the register file.
• Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3) #  $t0 = A[8]

$ $ $ $ $add $t0, $s2, $t0#  $t0 = h + $t0
sw $t0, 32($s3) #  A[8] = $t0

Note: (1) lw = load word,  sw = store word
(2) $t0 is a temporary register that accumulates the final result
(3) Register $s2 holds  variable “h”
(4) Register $s3 is the index register that holds the start(4) Register $s3 is the index register that holds the start 

address of the array A i.e. the location where array A starts.
• Store word has destination last

R b i h i d i !• Remember arithmetic operands are registers, not memory!
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So far we’ve learned:
• MIPS

— loading words but addressing bytesg g y
— arithmetic on registers only

• Instruction Meaning

add $s1 $s2 $s3 $s1 = $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]lw $s1, 100($s2) $s1  Memory[$s2 100] 
sw $s1, 100($s2) Memory[$s2+100] = $s1
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Conditional Operations
§2.7 In

• Branch to a labeled instruction if a condition is
true

nstructitrue
– Otherwise, continue sequentially

• beq rs, rt, L1

ons forbeq rs, rt, L1
– if (rs == rt) branch to instruction labeled L1;

• bne rs, rt, L1

r M
akinbne rs, rt, L1

– if (rs != rt) branch to instruction labeled L1;
• j L1

ng D
ecisj L1

– unconditional jump to instruction labeled L1

sions
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Compiling If Statements
• C code:
if (i j) f  hif (i==j) f = g+h;
else f = g-h;

– f, g, … in $s0, $s1, …
• Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2add $s0, $s1, $s2
j   Exit

Else: sub $s0, $s1, $s2
Exit: …

A bl l l t ddAssembler calculates addresses
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Compiling Loop Statements
• C code:
while (save[i] == k) i += 1;while (save[i] == k) i += 1;

– i in $s3, k in $s5, address of save in $s6
C il d MIPS d• Compiled MIPS code:
Loop: sll $t1, $s3, 2

dd  $ 1  $ 1  $ 6add  $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0  $s5  Exitbne $t0, $s5, Exit
addi $s3, $s3, 1
j    Loop

i  Exit: …
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Basic Blocks

• A basic block is a sequence of instructions with
– No embedded branches (except at end)
– No branch targets (except at beginning)

 A compiler identifies basic A compiler identifies basic 
blocks for optimization
An advanced processor can An advanced processor can 
accelerate execution of basic 
blocksblocks
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More Conditional Operations
• Set result to 1 if a condition is true

Otherwise set to 0– Otherwise, set to 0
• slt rd, rs, rt

if ( t) d 1 l d 0– if (rs < rt) rd = 1; else rd = 0;
• slti rt, rs, constant

– if (rs < constant) rt = 1; else rt = 0;
• Use in combination with beq, bneq

slt $t0, $s1, $s2  # if ($s1 < $s2)
bne $t0, $zero, L  #   branch to L
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Branch Instruction Design
• Why not blt, bge, etc?

Hardware for < ≥ slower than ≠• Hardware for <, ≥, … slower than =, ≠
– Combining with branch involves more work per

instruction requiring a slower clockinstruction, requiring a slower clock
– All instructions penalized!
b d b th• beq and bne are the common case

• This is a good design compromise
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Control Flow
• We have:  beq, bne, what about Branch-if-less-than?
• New instruction:New instruction:

if  $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else 
$t0 = 0

• Can use this instruction to build  "blt $s1, $s2, Label" 
can now build general control structures— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registersthere are policy of use conventions for registers
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Signed vs. Unsigned
• Signed comparison: slt, slti

Unsigned comparison: sltu sltui• Unsigned comparison: sltu, sltui
• Example

– $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
– $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
– slt $t0, $s0, $s1 # signed

• –1 < +1  $t0 = 1
– sltu $t0, $s0, $s1 # unsigned

• +4,294,967,295 > +1  $t0 = 0
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Instructions for Control flow
• Decision making instructions

– alter the control flow,alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:
bne $t0, $t1, Label 
beq $t0, $t1, Label 

• Example: if (i==j) h = i + j; 
bne $s0, $s1, Label
add $s3 $s0 $s1add $s3, $s0, $s1
Label: ....
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Unconditional Branch: jump instruction

• MIPS unconditional branch instructions:
j l b lj  label

• Jump Instruction Format:
op 26 bit address

6 bits 26 bits

• Example:

if (i!=j) beq $s4 $s5 Lab1if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...
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Representing Instructions
§2.5 R

• Instructions are encoded in binary
Called machine code

R
epresen– Called machine code

• MIPS instructions
E d d 32 bit i t ti d

nting In

– Encoded as 32-bit instruction words
– Small number of formats encoding operation code

(opcode) register n mbers

nstructio(opcode), register numbers, …
– Regularity!

R i t b

ons in t

• Register numbers
– $t0 – $t7 are reg’s 8 – 15

the C
om

– $t8 – $t9 are reg’s 24 – 25
– $s0 – $s7 are reg’s 16 – 23

m
puter
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MIPS R-format Instructions

op rs rt rd shamt funct

• Instruction fields

p
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• Instruction fields
– op: operation code (opcode)

rs: first source register number– rs: first source register number
– rt: second source register number

rd: destination register number– rd: destination register number
– shamt: shift amount (00000 for now)

f t f ti d ( t d d )– funct: function code (extends opcode)
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R-format Example

op rs rt rd shamt functp
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 320 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016
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Hexadecimal

• Base 16
C t t ti f bit t i– Compact representation of bit strings

– 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

E l 8 6420 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000
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Data Types: Binary to Hexadecimal

e c a 8 6 4 2 0

1100 1010 10001110 0100 00100110 0000
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Data Types: Hexadecimal to Binary

0011 0101 01110001 1011 11011001 11110011 0101 01110001 1011 11011001 1111

1 3 5 7 9 b d f
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Machine Language
• Instructions, like registers and words of data, are also 32 bits long

– Example:   add $t0, $s1, $s2
registers have numbers t0 8 s1 17 s2 18– registers have numbers, t0=8, s1=17, s2=18

• Instruction Format (R-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op: operation of the instruction
rs: the first register source operand
rt: the second register source operandrt: the second register source operand
shamt: shift amount (we will look at this later..)
funct: function; this field selects the variant of the operation in the op field
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MIPS I-format Instructions

op rs rt constant or address

• Immediate arithmetic and load/store instructions

p
6 bits 5 bits 5 bits 16 bits

– rt: destination or source register number
– Constant: –215 to +215 – 1
– Address: offset added to base address in rs

• Design Principle 4: Good design demands goodg p g g
compromises
– Different formats complicate decoding, but allow 32-bit

finstructions uniformly
– Keep formats as similar as possible
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Machine Language
• Consider the load-word and store-word instructions,

– What would the regularity principle have us do?
– New principle:  Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructionsyp
– other format was R-type for register

Example:  lw $t0, 32($s2)p $ , ($ )
35 18 9 32

6 bits 5 bits 5 bits 16 bits

op rs rt 16 bit number
• Where's the compromise?
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MIPS Instructions: So far …
• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
b $ 1 $ 2 $ 3 $ 1 $ 2 $ 3sub $s1,$s2,$s3 $s1 = $s2 – $s3

lw $s1,100($s2) $s1 = Memory[$s2+100] 
sw $s1 100($s2) Memory[$s2+100] = $s1sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 != $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5q
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

R
6 bits 5 bits 6 bits5 bits 5 bits 5 bits

op rs rt 16 bit address

op 26 bit address

I

J
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Generic Examples of Instruction 
Format Widths

Variable: …

Fi d

…

Fixed:

Hybrid:
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Summary of Instruction Formatsy

• If code size is most important use variable lengthIf code size is most important, use variable length
instructions.

If f i t i t t fi d l th• If performance is most important, use fixed length
instructions.

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb MIPS16); per procedure decideinstructions (Thumb, MIPS16); per procedure decide
performance or density.
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Assembly versus Machine Languagey g g

• Assembly provides convenient symbolic representationsse b y p o des co e e t sy bo c ep ese tat o
– much easier than writing down numbers
– e.g., destination firste.g., destination first

• Machine language is the underlying reality
– e g destination is no longer firste.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e g “move $t0 $t1” exists only in Assemblye.g., move $t0, $t1 exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real• When considering performance you should count real
instructions.
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Other Issues
• Several other issues can be considered:

support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointersmanipulating strings and pointers
interrupts and exceptions
system calls and conventionssystem calls and conventions

• We've focused on architectural issues
– basics of MIPS assembly language and machine codebasics of MIPS assembly language and machine code.
– we’ll build a processor to execute these instructions.
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Procedure Calling
§2.8 S

• Steps required
1 Place parameters in registers

upporti1. Place parameters in registers
2. Transfer control to procedure
3 Acquire storage for procedure

ing Proc3. Acquire storage for procedure
4. Perform procedure’s operations
5 Place res lt in register for caller

cedures

5. Place result in register for caller
6. Return to place of call

s in C
omm

puter H
ardw

are
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Register Usage
• $a0 – $a3: arguments (reg’s 4 – 7)
• $v0 $v1: result values (reg’s 2 and 3)• $v0, $v1: result values (reg s 2 and 3)
• $t0 – $t9: temporaries

Can be overwritten by callee– Can be overwritten by callee
• $s0 – $s7: saved

Must be saved/restored by callee– Must be saved/restored by callee
• $gp: global pointer for static data (reg 28)

$ t k i t ( 29)• $sp: stack pointer (reg 29)
• $fp: frame pointer (reg 30)
• $ra: return address (reg 31)
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Procedure Call Instructions
• Procedure call: jump and link
jal ProcedureLabeljal ProcedureLabel

– Address of following instruction put in $ra
J t t t dd– Jumps to target address

• Procedure return: jump register
jr $ra

– Copies $ra to program counterp p g
– Can also be used for computed jumps

• e.g., for case/switch statements
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Leaf Procedure Example
• C code:
int leaf example (int g  h  i  j)int leaf_example (int g, h, i, j)
{ 

i fint f;
f = (g + h) - (i + j);

 freturn f;
}

– Arguments g, …, j in $a0, …, $a3
– f in $s0 (hence, need to save $s0 on stack)
– Result in $v0
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Leaf Procedure Example
MIPS d• MIPS code:
leaf_example:

ddi $ $ 12 # Make room is stack for 3 itemaddi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)

# Make room is stack for 3 item

# Save $t1, $t0, $s0 on stacksw $t0, 4($sp)
sw $s0, 0($sp)
add  $t0, $a0, $a1
add $t1 $a2 $a3 # Procedure bodyadd  $t1, $a2, $a3
sub  $s0, $t0, $t1
add  $v0, $s0, $zero

$ $

# Procedure body

# Result, Return value of f
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1 8($sp)

# Restore $t1, $t0, $s0
lw $t1, 8($sp) 
addi $sp, $sp, 12
jr $ra # Return to the calling routine

# Adjust stack to delete 3 item
g
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Stack Pointer

Before During After

• Values of stack pointer and stack for procedure call.
• The stack pointer always points to the “top” of theThe stack pointer always points to the top of the

stack, or the last word in the stack in this drawing.
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Non-Leaf Procedures
• Procedures that call other procedures

For nested call caller needs to save on the• For nested call, caller needs to save on the
stack:

It t dd– Its return address
– Any arguments and temporaries needed after the call

• Restore from the stack after the call
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Non-Leaf Procedure Example
• C code:
int fact (int n)int fact (int n)
{ 
if (n < 1) return 1;if (n < 1) return 1;
else return n * fact(n - 1);

}}

– Argument n in $a0
R lt i $ 0– Result in $v0
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Non-Leaf Procedure Example
• MIPS code:

fact:fact:
addi $sp, $sp, -8     # adjust stack for 2 items
sw $ra, 4($sp)      # save return address
sw $a0, 0($sp)      # save argument$ , ($ p) g
slti $t0, $a0, 1      # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1    # if so, result is 1
addi $sp, $sp, 8      #   pop 2 items from stack
jr $ra #   and return

L1: addi $a0, $a0, -1     # else decrement n  
jal fact             # recursive call
lw $a0, 0($sp)      # restore original n
lw $ra, 4($sp)      #   and return address
ddi $  $  8      #  2 i  f  kaddi $sp, $sp, 8      # pop 2 items from stack

mul $v0, $a0, $v0    # multiply to get result
jr $ra # and return to the caller
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Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:  
CALL B
B:  

A

A B
CALL C

C:  A B C
RET

RET
A B

RET
A

• Some machines provide a memory stack as part of thep y p
architecture (e.g., VAX)

• Sometimes stacks are implemented via software convention (e.g.,
MIPS)
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Frame and Stack Pointer

Before During After
• The frame pointer points to the first word in the frame ofThe frame pointer points to the first word in the frame of

a procedure.
• Frame pointer is a saved argument register.g g
• The stack is adjusted to make room for all saved

registers and any memory-resident local variables.
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Memory Layout

• Text: program code
St ti d t l b l• Static data: global
variables

t ti i bl i C– e.g., static variables in C,
constant arrays and strings

– $gp initialized to address$gp initialized to address
allowing ±offsets into this
segment

• Dynamic data: Heap
– e.g., malloc in C, new in

JJava
• Stack: automatic storage
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Overview of MIPS
• simple instructions all 32 bits wide
• very structured no unnecessary baggagevery structured, no unnecessary baggage
• only three  instruction formats

6 bits 5 bits 6 bits5 bits 5 bits 5 bits
op rs rt rd shamt funct

op rs rt 16 bit address

R

I

op 26 bit addressJ

• rely on compiler to achieve performance
— what are the compiler's goals?what are  the compiler s goals?

• help compiler where we can.
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Branch Addressing

• Branch instructions specify
– Opcode, two registers, target address

• Most branch targets are near branch
– Forward or backward

t t t ddop rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4g
 PC already incremented by 4 by this time
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Jump Addressing

• Jump (j and jal) targets could be anywhere in
t t ttext segment
– Encode full address in instruction

op addressop address
6 bits 26 bits

(P d )Di t j dd i (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)
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Target Addressing Example

• Loop code from earlier example
– Assume Loop at location 80000

Loop: sll $t1  $s3  2 80000 0 0 19 9 4 0Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add  $t1, $t1, $s6 80004 0 9 22 9 0 32

lw   $t0  0($t1) 80008 35 9 8 0lw   $t0, 0($t1) 80008 35 9 8 0

bne  $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1addi $s3, $s3, 1 80016 8 19 19 1

j    Loop 80020 2 20000

Exit: … 80024Exit: … 80024
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Branching Far Away
• If branch target is too far to encode with 16-bit

offset assembler rewrites the codeoffset, assembler rewrites the code
• Example

b $ 0 $ 1  1beq $s0,$s1, L1

↓
b $ 0 $ 1  2bne $s0,$s1, L2
j L1

L2:L2: …
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Addressing Mode Summary
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To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform 

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

30230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw  $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1 $s2 25 if ($s1 == $s2) go to Equal test; PC relative branchbranch on equal beq  $s1, $s2, 25 if ($s1 == $s2) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          
else $s1 = 0

Compare less than; for beq, bne
else $s1 = 0

set less than 
immediate

slti  $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          
else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address
Uncondi- jump register jr   $ra go to $ra For switch, procedure return
tional j mp j d li k jal 2500 $ra PC + 4 go to 10000 F d ll
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