
Lecture 4: Arithmetic forLecture 4: Arithmetic for
Computersp

CSCE 2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books websites authors pages and otherfrom various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 2610: Computer Organization 1

not claim any originality.

Outline of this Lecture
• Addition/Subtraction operation
• Logic operationLogic operation
• Design of arithmetic and logic unit (ALU)
• Multiplication operation
• Design of hardware for multiplication
• Division operation

D i f h d f di i i• Design of hardware for division
• Floating point operation
• Design of hardware for floating point operationDesign of hardware for floating point operation

CSCE 2610: Computer Organization 2

Arithmetic
• Where we've been:

Performance (seconds cycles instructions)– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set ArchitectureInstruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:What s up ahead:
– Implementing the Architecture

operation

32

result

a

ALU

32

32

bLet us first learn numbers!!

CSCE 2610: Computer Organization 3

Numbers
• Bits are just bits (no inherent meaning)

– conventions define relationship between bits andp
numbers

• Binary numbers (base 2)
– 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2n-1

Of it t li t d• Of course it gets more complicated:
– numbers are finite (overflow)
– fractions and real numbers– fractions and real numbers
– negative numbers
– e.g., no MIPS subi instruction; addi can add a negative number

• How do we represent negative numbers?
– i.e., which bit patterns will represent which numbers?

CSCE 2610: Computer Organization 4

Value of a Digit or Number
• In any number base, the value of ith digit d is: d x Basei

• “i” starts at 0 and increases from right to lefti starts at 0 and increases from right to left.
• For decimal base is 10, for binary base is 2.
• For clarity decimals will have subscript 10 and binary

will have subscript 2 and so on….
• Example: 10112 represents

(1 23) + (0 22) + (1 21) + (1 20)(1x23) + (0x22) + (1x21) + (1x20)10
= (1x8) + (0x4) + (1x2) + (1x1)10
= 8 + 0 + 2 + 1108 + 0 + 2 + 110
= 1110

CSCE 2610: Computer Organization 5

Why Don’t Computers Use Decimals?
• Easy hardware implementation
• The building block of digital computers the transistors actThe building block of digital computers, the transistors, act

as a switch. A switch has two states ON or OFF.
• Converting back and forth between binary and decimal can

be for infrequent input/output events can be inefficient.

CSCE 2610: Computer Organization 6

Possible Representations
• Sign One's Two's

Magnitude Complement Complement
000 0 000 0 000 0000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 3 111 0 111 1111 = -3 111 = -0 111 = -1

• Issues: balance number of zeros ease of operations• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?

CSCE 2610: Computer Organization 7

MIPS
• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000 = 00000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten

maxint

1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten

minint

two , , , ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110t o = – 2ten1111 1111 1111 1111 1111 1111 1111 1110two 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

CSCE 2610: Computer Organization 8

Two's Complement Operations
• Negating a two's complement number: invert all bits and add 1

remember: “negate” and “invert” are quite different!– remember: negate and invert are quite different!

• Converting n bit numbers into numbers with more than n bits:

MIPS 16 bit immediate gets con erted to 32 bits for arithmetic– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
0010 > 0000 00100010 -> 0000 0010
1010 -> 1111 1010

"sign extension" (lbu vs lb)– "sign extension" (lbu vs. lb)

CSCE 2610: Computer Organization 9

Decimal Value of a 2’s Complement Binary
• 32-bit 2’s complement number

1111 1111 1111 1111 1111 1111 1111 110021111 1111 1111 1111 1111 1111 1111 11002
• Decimal value:

(1x-231) + (1x230) + (1x229) + …. + (0x21) + (0x20)1010
= -231 + 230 + 229 + …. + 0 + 010
= -2,147,483,64810 + -2,147,483,64410

4= -410

CSCE 2610: Computer Organization 10

Negation
• Negate 210

210 = 0000 0000 0000 0000 0000 0000 0000 00102
Inverting bits:

1111 1111 1111 1111 1111 1111 1111 11012
Adding 1:Adding 1:

1111 1111 1111 1111 1111 1111 1111 11102 = -210

• Negate -210
-210 = 1111 1111 1111 1111 1111 1111 1111 11102
Inverting bits:

0000 0000 0000 0000 0000 0000 0000 00012
Adding 1:Adding 1:

0000 0000 0000 0000 0000 0000 0000 00102 = 210

CSCE 2610: Computer Organization 11

Memory Space for Different Data Type
Type Description Size
h Ch t ll i t 1b tchar Character or small integer. 1byte

short int (short) Short Integer. 2bytes

int Integer. 4bytes

long int (long) Long integer 4byteslong int (long) Long integer. 4bytes

bool Boolean value. It can take one of two values:
true or false. 1byte

float Floating point number. 4bytes
double Double precision floating point number. 8bytes

l d bl L d bl i i fl i i b 8blong double Long double precision floating point number. 8bytes

Source: http://www.cplusplus.com/doc/tutorial/variables.html

CSCE 2610: Computer Organization 12

Addition and Subtraction
• Just like in grade school (carry/borrow 1s)

0111 0111 0110
0110 0110 0101+ 0110 - 0110 - 0101

• Two's complement operations easyTwo s complement operations easy
– subtraction using addition of negative numbers

0111
+ 1010

Overflow (result too large for finite computer word):• Overflow (result too large for finite computer word):
– e.g., adding two n-bit numbers does not yield an n-bit number

01110111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

CSCE 2610: Computer Organization 13

Detecting Overflow
• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative
ddi t ti i iti– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a negative
– or subtract a positive from a negative and get a positiveor, subtract a positive from a negative and get a positive

Operation Operand A Operand B Result
A + B >= 0 >= 0 < 0
A + B < 0 < 0 >=0
A B > 0 < 0 < 0A - B >= 0 < 0 < 0
A - B < 0 >= 0 >= 0

CSCE 2610: Computer Organization 14

Effects of Overflow
• An exception (interrupt) occurs

– Control jumps to predefined address for exceptionControl jumps to predefined address for exception
– Interrupted address is saved for possible resumption
– Details based on software system / language– Details based on software system / language

Example: flight control vs. homework assignment

• MIPS instructions:add, addi, sub cause exceptions on
overflowoverflow

• Don't always want to detect overflowDon t always want to detect overflow
— MIPS instructions: addu, addiu, subu

do not cause exceptions on overflowdo not cause exceptions on overflow

CSCE 2610: Computer Organization 15

Exception and Interrupt

Exception: An unscheduled event that disrupts• Exception: An unscheduled event that disrupts
program execution.

• Interrupt: An exception that comes from outside of the• Interrupt: An exception that comes from outside of the
processor.

• Some architectures use the term interrupt for allSome architectures use the term interrupt for all
exceptions.

CSCE 2610: Computer Organization 16

Exception in MIPS

• MIPS has a register called “exception program counter”
(EPC) to contain the address of the instruction that(EPC) to contain the address of the instruction that
caused exception.

• The instruction “move from system control” (mfc0) copies• The instruction move from system control (mfc0) copies
EPC into a GPR so that program can return to the
offending instruction via a “jump register” (jr) instruction.g j p g (j)

CSCE 2610: Computer Organization 17

What Happens in a Computer When
Interrupt/Exception Occurs?

• States of the associated registers are saved• States of the associated registers are saved.
• Subroutines in an operating system or device driver

called interrupt handlers or an interrupt service routinescalled interrupt handlers or an interrupt service routines
(ISRs), is triggered for execution.

• Interrupt service routines (ISRs), have a several functionsp (),
to handle different types of interrupt/exception.

• ISRs serve the interrupt.
• Registers are loaded back.
• Execution of the program that caused exceptiong

continues.

CSCE 2610: Computer Organization 18

Logical Operations

• Shift left logical (sll)
Sll $10, $16, 8 # reg $10 = reg $16 << 8 bits

op rs rt rd shamt funct

0 0 16 10 8 0

• Shift right logical (srl)
• AND, OR operations (and, andi, or , ori), p (, , ,)

CSCE 2610: Computer Organization 19

An ALU (arithmetic logic unit)
• Let's build an ALU to support the and and or

instructionsinstructions
– we'll just build a 1 bit ALU, and use 32 of them

operation op a b result

b

a result
b

• Possible Implementation (sum-of-products):p (p)

CSCE 2610: Computer Organization 20

Review: The Multiplexor
• Selects one of the inputs to be the output,

based on a control inputbased on a control input

S

C
A 0 note: we call this a 2-input mux

h h i h 3 i !C
B

1

even though it has 3 inputs!

• Lets build our ALU using MUXes:

CSCE 2610: Computer Organization 21

Different Implementations
• Not easy to decide the “best” way to build

somethingsomething
– Don't want too many inputs to a single gate

D t t t h t th h t t– Dont want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

cout = a b + a cin + b cin
sum = a xor b xor cinSum

CarryIn

a

CarryOut

b

CSCE 2610: Computer Organization 22

Different Implementations …

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32 bit ALU?• How could we build a 32-bit ALU?

CSCE 2610: Computer Organization 23

Building a 32 bit ALU
C arryIn O pe ra t io n

Operation
CarryIn R e su lt0

C arry In

a0

O pe ra t io n

C arry In

a

CarryIn R e su lt0
b0 A LU 0

C arry O u t

0
a

R e su lt1
a1

b1 A LU 1

C arry In

C arry O u t

Result
1

R e su lt2
a2

b2 A LU 2

C arry In

b
2

b2
C arry O u t

CarryOut R e su lt31
a3 1 C arry In

CSCE 2610: Computer Organization 24

CarryOut R e su lt31
b3 1 A LU 3 1

What about subtraction (a – b) ?
• Two's complement approach: just negate b and

addadd.
• How do we negate?

Operation
CarryIn

Binvert

0
a

• A very clever solution:
Result1

20

1

b

1

CSCE 2610: Computer Organization 25
CarryOut

Tailoring the ALU to the MIPS

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwisep

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

CSCE 2610: Computer Organization 26

Supporting slt for MIPS

Less will be zero for all
bits other than LSB which

ill b i fwill be 0 or 1 coming from
the “set” output of MSB.

CSCE 2610: Computer Organization 27

Supporting slt and Overflow: 1-bit ALU for MSB

Overflow detection logic at
the most significant bit
(MSB) ALU.

CSCE 2610: Computer Organization 28

32-bit ALU for MIPS: Using 32 1-bit ALUs
C O

ALU 0 R esult0

C a rryIn

a0

O pera tion

b0

B inve rt

C a rryIn
ALU 0 R esult0b0
Less

C arryO u t

R esult1
a1

0
b1 ALU 1

Less

C arryIn

C arryO u t

R esult2
a2

0
b2 ALU 2

Less

C arryIn

C arryO u t

C a rry In

S et
a31

0
b31

R esult31

O ve rflow
ALU 31
Less

C arryIn

CSCE 2610: Computer Organization 29

32-bit ALU for MIPS: Using 32 1-bit ALUs
OperationBnegate

Result0a0

Operation

b0

Bnegate

ALU0
CarryIn

• “Bnegate” is a single control line
combining CarryIn and Binvert.

a1

Less
CarryOut

CarryIn

combining CarryIn and Binvert.

Result1a1

0
b1

Zero

ALU1
Less

CarryIn

CarryOut

Result2a2

0
b2 ALU2

Less

CarryIn

CarryOut

• Testing for equality needed for
conditional branch instructions.

• If subtraction results is 0, then
they are equal.

• “Zero” is a 1 when the result is 0!
Set

a31

0
b31

Result31

Overflow
ALU31
Less

CarryIn

Zero is a 1 when the result is 0!

CSCE 2610: Computer Organization 30

ALU Design: Summary
• We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we wanty p p
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the

gate
the speed of a circuit is affected by the number of gates in series– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
• Our primary focus: comprehension, however,p y p , ,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication
CSCE 2610: Computer Organization 31

Binary Multiplication

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Negative numbers: convert and multiply

– there are better techniques.

CSCE 2610: Computer Organization 39

Binary Multiplication

• Example:
M lti li d 1011Multiplicand: 1011
Multiplier: x 101

10111011
0000

1011__
Product: 110111

• Observation : The multiplier bits are always 1 or 0, therefore the
partial products are equal to either the multiplicand or to 0.partial products are equal to either the multiplicand or to 0.

• The above fact has been exploited in various ways, and many time
and hardware efficient multiplication algorithms have been
developeddeveloped.

• Booth’s multiplier and Wallace-Tree multiplier are two examples.

CSCE 2610: Computer Organization 40

Binary Multipliers: A 2-bit example

Product A0 and B0Product A0 and B0
is 1 if both are 1,
else it is 0. Thus,
the product is
same as AND

tioperation.

CSCE 2610: Computer Organization 41

Binary Multipliers: A 4-bit by 3-bit example

For J multiplier bits
and K multiplicandand K multiplicand
bits, we need JxK
AND gates and (J-1)AND gates and (J 1)
K-bit adders to
produce a product
of J+K bits.

CSCE 2610: Computer Organization 42

Multiplication Implementation: v1
Start

1. Test
M ultip lier0

M ultip lier0 = 0M ultip lier0 = 1

1a. Add m ultip licand to product and
place the result in Product register

Multiplicand

2. Sh ift the M ultip licand register le ft 1 b it

3. Shift the M ultip lier register right 1 bit

p
Shift left

64 bits

3. Shift the M ultip lier register right 1 bit

32nd repetition?
No: < 32 repetitions

64-bit ALU
Multiplier

Shift right

32 bits

Done

Yes: 32 repetitionsControl testProduct
Write

64 bits

CSCE 2610: Computer Organization 43

Fast Multiplication Hardware: Unrolls the Loop

• Rather than using a single 32-bit
adder 32 times this hardwareadder 32 times, this hardware
“unrolls the loop” to use 32
adders.

• Each adder produces a 32-bit sum
and a carry out.

• 1st input: multiplicand ANDed with
a multiplier bit.

• The LSB bit is a bit of the product.

• The carry out and the upper 31bitsThe carry out and the upper 31bits
of the sum are passed along the
next adder as 2nd input.

CSCE 2610: Computer Organization 46

Multiplication: MIPS Instructions

• A pair of 32-bit registers Hi and Lo available for 64-bit
product.
T i t ti lt d lt• Two instructions: mult and multu

• Both instructions ignore overflow.
P d i t ti fl fhi d t l d t• Pseudo-instructions mflo mfhi are used to place products
into registers.

CSCE 2610: Computer Organization 47

Division
• Example:

1001ten Quotientten Q

Divisor 1000ten | 1001010ten Dividend
- 1000

10
101101
1010

-1000
10ten Remainder

Ob ti Di id d Q ti t Di i R i d• Observation : Dividend = Quotient x Divisor + Remainder

CSCE 2610: Computer Organization 48

Division Implementation: v1

CSCE 2610: Computer Organization 49

Division: MIPS Instructions

• The pair of 32-bit registers Hi and Lo are used.
• Two instructions: div and divu
• Hi contains the remainder and Lo contains the

quotient after the divide instruction is complete.quotient after the divide instruction is complete.
• Pseudo-instructions mflo mfhi are used to place

results into registersresults into registers.

CSCE 2610: Computer Organization 51

Floating Point : a brief look
• We need a way to represent

numbers with fractions e g 3 1416– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., 0.000000001

very large numbers e g 3 15576 E 109– very large numbers, e.g., 3.15576 E 109

• Representation:

sign exponent significand: (1)sign X significant X �2exponent– sign, exponent, significand: (–1)sign X significant X �2exponent

– more bits for significand gives more accuracy

more bits for exponent increases range– more bits for exponent increases range

• IEEE 754 floating point standard:

single precision: 8 bit exponent 23 bit significand– single precision: 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

CSCE 2610: Computer Organization 52

IEEE 754 floating-point standard
• Leading “1” bit of significand is implicit.

E t i “bi d” t k ti i (l iti• Exponent is “biased” to make sorting easier (as only positive
numbers are to be dealt with)
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (–1)sign X (1+fraction) X ��2exponent – bias

• Example:

– decimal: -0.75 = -3/4 = -3/22

– binary: -0.11 = -1.1 x 2-1 = -1.1 x 2(126-127)

– floating point: exponent = 126 = 01111110
IEEE single precision 10111111010000000000000000000000– IEEE single precision: 10111111010000000000000000000000

CSCE 2610: Computer Organization 53

Float-Point Representation: Single Precision

• A floating-point value is represented in a single 32-bit word.
• Bias value for single precision is 127• Bias value for single precision is 127.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

s Exponent Fraction
1 8 bits 23 bits

• Decimal number -0 75 is represented as follows:Decimal number 0.75 is represented as follows:
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 01 0 1 1 1 1 1 1 0 1 0
s Exponent Fraction
1 8 bits 23 bits

CSCE 2610: Computer Organization 54

Float-Point Representation: Double Precision

• A floating-point value is represented in two 32-bit words.
• Bias value for single precision is 1023• Bias value for single precision is 1023.
• Decimal number -0.75 is represented as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s Exponent Fraction
1 11 bit 20 bit

Register - 1

1 11 bits 20 bits

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0 Register - 2
0 0

32 bits

CSCE 2610: Computer Organization 55

Floating Point Complexities
• Operations are somewhat more complicated

• In addition to overflow we can have “underflow”In addition to overflow we can have underflow

• Accuracy can be a big problem
IEEE 754 keeps two extra bits guard and round– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!p g

CSCE 2610: Computer Organization 56

Floating Point Addition

CSCE 2610: Computer Organization 57

Floating Point Multiplication

CSCE 2610: Computer Organization 58

Floating-Point Instruction in MIPS
• Addition: add.s (single) and add.d
• Subtraction: sub s and sub dSubtraction: sub.s and sub.d
• Multiplication: mul.s and mul.d
• Division: div s and div d• Division: div.s and div.d

CSCE 2610: Computer Organization 59

Summary
• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards doBit patterns have no inherent meaning but standards do

exist
– two’s complementtwo s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bitComputer instructions determine meaning of the bit
patterns

• Performance and accuracy are important so there arey p
many complexities in real machines (i.e., algorithms
and implementation).

• We are ready to move on (and implement the processor)

CSCE 2610: Computer Organization 60

