# Lecture 6: Design Flow

# CSCE 5730 Digital CMOS VLSI Design

#### Instructor: Saraju P. Mohanty, Ph. D.

**NOTE**: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.







# Lecture Outline

- Hierarchical Design
- Logic Design
- Circuit Design
- Physical Design





# Hierarchical Design: Design Partitioning

- How to design modern System-on-Chip (SOC)?
  - Many millions (soon billions!) of transistors
  - Tens to hundreds of engineers
- Approaches for larger system design:
  - Structured Design: Uses principles of Hierarchy, Regularity, Modularity, and Locality
  - Design Partitioning: Design is partitioned to five interrelated tasks, such as architecture design, microarchitecture design, logic design, circuit design and physical design.



# **Design Partitioning : Structured Design**

- Hierarchy: Divide and Conquer
  - Recursively system into modules
- Regularity
  - Reuse modules wherever possible
  - Ex: Standard cell library
- Modularity: well-formed interfaces
  - Allows modules to be treated as black boxes
- Locality
  - Physical and temporal



# **Hierarchical Design: Flow**









# **Design Partitioning : Y-Chart**

#### • Architecture: User's perspective, what does it do?

- Instruction set, registers
- -MIPS, x86, Alpha, PIC, ARM, ...

#### • Microarchitecture:

- Single cycle, multicycle, pipelined, superscalar?

#### • Logic: how are functional blocks constructed – Ripple carry, carry look-ahead, carry select adders

# Circuit: how are transistors used Complementary CMOS, pass transistors, domino

#### • Physical: chip layout

- Datapaths, memories, random logic





### **Design Partitioning : Y-Chart**



- Explains each domain and transformation among domains.
- Design process proceeds from higher to lower levels of abstractions i.e. from outer to inner rings.





# Hardware Description Language (HDL)

- Hardware Description Languages
  - Widely used in logic design
  - Verilog
  - Very-High-Speed-Integrated-Circuit HDL (VHDL)
- Describe hardware using code
  - Document logic functions
  - Simulate logic before building
  - Synthesize code into gates and layout
    - Requires a library of standard cells



# HDLs: Verilog Example

#### module fulladder

(input a, b, c, output s, cout); sum s1(a, b, c, s); carry c1(a, b, c, cout); endmodule module carry (input a, b, c, output cout)

assign cout

#### endmodule







# **Circuit Design**

- How should logic be implemented?
  - NANDs and NORs vs. ANDs and ORs?
  - Fan-in and fan-out?
  - How wide should transistors be?
- These choices affect speed, area, power
- Logic synthesis makes these choices for you
  - Good enough for many applications
  - Hand-crafted circuits are still better





# Carry Logic Example: Logic Level

• **assign** cout = (a&b) | (a&c) | (b&c);



Transistors? Gate Delays?





# Carry Logic Example: Transistor Level

• **assign** cout = (a&b) | (a&c) | (b&c);



#### Transistors? Gate Delays?





#### Digital CMOS VLSI Design





### Carry Logic Example: Gate-level Netlist

# module carry (input a, b, c, output cout)

wire x, y, z; and g1(x, a, b); and g2(y, a, c); and g3(z, b, c); or g4(cout, x, y, z);



#### endmodule



### Carry Logic Example: Transistor-Level Netlist

module carry (**input** a, b, c, **output** cout) wire i1, i2, i3, i4, cn; **tranif1** n1(i1, 0, a); **tranif1** n2(i1, 0, b); **tranif1** n3(cn, i1, c); **tranif1** n4(i2, 0, b); **tranif1** n5(cn, i2, a); **tranif0** p1(i3, 1, a); **tranif0** p2(i3, 1, b); **tranif0** p3(cn, i3, c); **tranif0** p4(i4, 1, b); **tranif0** p5(cn, i4, a); **tranif1** n6(cout, 0, cn); tranif0 p6(cout, 1, cn);

endmodule





# Carry Logic Example: SPICE Netlist

**SUBCKT** CARRY A B C COUT VDD GND MN1 I1 A GND GND NMOS W=1U L=0.18U AD=0.3P AS=0.5P MN2 I1 B GND GND NMOS W=1U L=0.18U AD=0.3P AS=0.5P MN3 CN C I1 GND NMOS W=1U L=0.18U AD=0.5P AS=0.5P MN4 I2 B GND GND NMOS W=1U L=0.18U AD=0.15P AS=0.5P MN5 CN A I2 GND NMOS W=1U L=0.18U AD=0.5P AS=0.15P MP1 I3 A VDD VDD PMOS W=2U L=0.18U AD=0.6P AS=1 P MP2 I3 B VDD VDD PMOS W=2U L=0.18U AD=0.6P AS=1P MP3 CN C I3 VDD PMOS W=2U L=0.18U AD=1P AS=1P MP4 I4 B VDD VDD PMOS W=2U L=0.18U AD=0.3P AS=1P MP5 CN A I4 VDD PMOS W=2U L=0.18U AD=1P AS=0.3P MN6 COUT CN GND GND NMOS W=2U L=0.18U AD=1P AS=1P MP6 COUT CN VDD VDD PMOS W=4U L=0.18U AD=2P AS=2P CI1 I1 GND 2FF **CI3 I3 GND 3FF** CA A GND 4FF CB B GND 4FF CC C GND 2FF CCN CN GND 4FF CCOUT COUT GND 2FF ENDS





# Physical Design

- Floorplan : First step. Determines if design will fit in are budget.
- Standard cells : Layout is often generated using automatic place and route.
- Slice planning : Divide to slices. Slice plan makes it is easy to calculate wire length, estimate area, and evaluate wire congestion.





# Layout Design Rules

- Interface between designer and process engineer
- Guidelines for constructing process masks
- Unit dimension: Minimum line width
  - scalable design rules: lambda parameter
  - absolute dimensions (micron rules)



# Layout Design Rules

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain

- Set by minimum width of polysilicon

- Normalize for feature size when describing design rules
- Express rules in terms of  $\lambda = f/2$ 
  - $-e.g. \lambda = 60 \text{ nm}$  in 120 nm process





# Layout Design Rules : Simplified Form

- Metal and diffusion have minimum width and spacing of  $4\lambda$ .
- Contacts are  $2\lambda \times 2\lambda$  and surrounded by  $1\lambda$  layer.
- Polysilicon width is  $2\lambda$ .
- Polysilicon overlaps diffusion by  $2\lambda$  or  $1\lambda$  depending on situation.
- Polysilicon and contacts have spacing  $3\lambda$ .
- n-well surrounds PMOS transistors by  $6\lambda$  and NMOS transistors  $6\lambda$ .

NOTE: Do not have to remember, CAD softwares handle it automatically once DRC are set depending on the foundry chosen.



# Layout Design Rules : Simplified Form

• Conservative rules to get you started





**Digital CMOS VLSI Design** 

20

# Logic Gate Layout : Inverter











# **CMOS Process Layers**

| Layer                | Color   | Representation |
|----------------------|---------|----------------|
| Well (p,n)           | Yellow  |                |
| Active Area (n+,p+)  | Green   |                |
| Select (p+,n+)       | Green   |                |
| Polysilicon          | Red     |                |
| Metal1               | Blue    |                |
| Metal2               | Magenta |                |
| Contact To Poly      | Black   |                |
| Contact To Diffusion | Black   |                |
| Via                  | Black   |                |





# Layers in 0.25 $\mu\text{m}$ CMOS process









# **Intra-Layer Design Rules**





**Digital CMOS VLSI Design** 



# **Transistor Layout**







# Vias and Contacts







# **Select Layer**





**Digital CMOS VLSI Design** 



# **CMOS Inverter Layout**



# Layout Editor

| 🎊 max: M         | 🐉 max: М foo /home/b/prof/jan/foo.max |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
|------------------|---------------------------------------|------|--------|------------------------------------------|----------------------------------|---------|------------------------------------------|--------------------------------------|------------------|-------------------------|-----------------------------------------|------------------|---------------------------------------|----------------------|-------|--------|---------------------|
| File Edit        | View                                  | Mask | C Tool | Misc                                     | Local                            | Help    | mai                                      | n moc                                | le. E            | BUT-1                   | sele                                    | cts, I           | BUT-                                  | 2 mo                 | ves s | electi | on, BU <sup>-</sup> |
| Active:          | 1+                                    |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| auto             |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| -cells-          |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| -all-            |                                       |      | -      |                                          |                                  | 200<br> | 1030303<br>101018<br>101018              |                                      |                  | 90309<br>91313<br>91313 | 201201<br>201201<br>201201<br>201201    |                  |                                       |                      |       |        |                     |
| metal            |                                       |      |        | uana na | e tenenene                       |         | inini.<br>Ininini                        |                                      |                  |                         |                                         | AINTOTOTO        | Octobrosti                            |                      |       |        |                     |
| m5               |                                       |      |        | জন্ম জন্মজন্ম<br>জন্ম জন্মজন্ম           | e onolone<br>e onolone           |         |                                          | nononon<br>Veneren<br>Veneren        |                  |                         |                                         | NOVON<br>NOVON   |                                       |                      |       |        |                     |
| m4               |                                       |      |        |                                          |                                  |         | Kalala<br>Malala                         | Noron (r<br>Norona)                  | <u>-11</u>       |                         |                                         |                  |                                       | 1                    |       |        |                     |
| v34              |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  | 222                                   |                      |       |        |                     |
| m3 m3            |                                       |      |        | 533                                      |                                  |         |                                          |                                      |                  |                         | EXTEXTED 1<br>EXTEXTED 1<br>EXTEXTED 10 |                  | 222                                   |                      |       |        |                     |
| v23              |                                       |      |        | 010 010101<br>010 010101                 | i ardar<br>Malan                 |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| <u>mz</u><br>v12 |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| m1               |                                       |      |        | 222                                      |                                  |         |                                          |                                      |                  |                         |                                         |                  | 222                                   |                      |       |        |                     |
| Ct Ct            |                                       |      |        | 888                                      |                                  |         |                                          |                                      | Najata           |                         |                                         |                  | 333                                   |                      |       |        |                     |
| active           |                                       |      |        |                                          |                                  |         | ATEXTERIES<br>ATEXTECTION<br>ATEXTECTION | ATEXTERIEST<br>MEMORY<br>ATEXTERIEST |                  |                         | ENTENTENTE<br>ENTENTENTE<br>ENTENTENTEN | NUMBER OF        |                                       | Mana<br>Mana<br>Mana |       |        |                     |
| poly             |                                       |      |        | মার মার্মার্মা<br>মার মার্মার্মার্মা     | n an Gan<br>Dan Gan<br>Dan Gan   |         |                                          | noronon<br>Noronon                   |                  |                         | સાસો લોકો<br>સાસો લોકો                  |                  |                                       |                      |       |        |                     |
| nfet             |                                       |      |        | NNN                                      | 1                                |         |                                          |                                      |                  |                         |                                         | 5                | NNN                                   |                      |       |        |                     |
| ndif             |                                       |      |        |                                          |                                  |         |                                          |                                      | NENELE<br>NENELE |                         |                                         |                  | 111                                   |                      |       |        | _                   |
| pdif             |                                       |      |        | 233                                      | 222                              |         |                                          | X 4.                                 | di da            |                         |                                         |                  | 222                                   | 1                    |       |        |                     |
| nwc              |                                       |      |        | and analog<br>and analog                 | i ongoni<br>i ongoni<br>i ongoni |         |                                          |                                      |                  |                         |                                         | MONONS<br>MONONS | र्वस्वयम्<br>जिन्द्रस्य<br>जिन्द्रस्य |                      |       |        |                     |
| pwc              |                                       |      |        | জন বাবাৰা                                |                                  |         |                                          | <u> Yalala</u> i                     | 10000            |                         |                                         | ananan           | <u>tatata</u>                         | 1919.0               |       |        |                     |
| ourier<br>No nee |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| pplus            |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
| nplus            |                                       |      |        | _                                        | -                                |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        | _                   |
| prb 🕅            |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
|                  |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
|                  |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
|                  |                                       |      |        |                                          |                                  |         |                                          |                                      |                  |                         |                                         |                  |                                       |                      |       |        |                     |
|                  | 🔳 drc                                 | done | n <    |                                          |                                  |         | ;                                        | out                                  |                  | -1                      | .15                                     | 0,               |                                       | 4.1                  | .00   | bo     | x:                  |







# Design Rule Checker







# **Sticks Diagram**



#### Stick diagram of inverter





# Logic Gate Layout

- Layout can be very time consuming
  - Design gates to fit together nicely
  - Build a library of standard cells
- Standard cell design methodology
  - V<sub>DD</sub> and GND should abut (standard height)
  - Adjacent gates should satisfy design rules
  - nMOS at bottom and pMOS at top
  - All gates include well and substrate contacts





#### **MIPS: Block Diagram**







# MIPS: Floorplan













Digital CMOS VLSI Design



# Area Estimation

- Need area estimates to make floorplan
  - Compare to another block you already designed
  - Or estimate from transistor counts
  - Budget room for large wiring tracks
  - Your mileage may vary!

| Table 1.10 Typical layout densities  |                                        |  |  |  |
|--------------------------------------|----------------------------------------|--|--|--|
| Element                              | Area                                   |  |  |  |
| random logic (2-level metal process) | 1000 – 1500 $\lambda^2$ / transistor   |  |  |  |
| datapath                             | $250 - 750 \lambda^2$ / transistor     |  |  |  |
|                                      | or 6 WL + 360 $\lambda^2$ / transistor |  |  |  |
| SRAM                                 | 1000 $\lambda^2$ / bit                 |  |  |  |
| DRAM (in a DRAM process)             | 100 $\lambda^2$ / bit                  |  |  |  |
| ROM                                  | 100 $\lambda^2$ / bit                  |  |  |  |





# **Design Verification**

- Fabrication is slow & expensive
  - MOSIS 0.6 $\mu$ m: \$1000, 3 months
  - State of art: \$1M, 1 month
- Debugging chips is very hard
   Limited visibility into operation
- Prove the design before building!
  - Logic simulation
  - Ckt. simulation / formal verification
  - Layout vs. schematic comparison
  - Design & electrical rule checks
- Verification is > 50% of effort on most chips!





