PUFshield: A Hardware-Assisted Approach for Deepfake Mitigation Through PUF-Based Facial Feature Attestation

Presenter: Venkata K. V. V. Bathalapalli

Venkata K. V. V. Bathalapalli¹, Venkata P. Yanambaka², S. P. Mohanty³, E. Kougianos⁴

University of North Texas, Denton, TX, USA.^{1,3,4} and Texas Woman's University,².

Email: vb0194@unt.edu¹, vyanambaka@twu.edu², saraju.mohanty@unt.edu³, elias.kougianos@unt.edu⁴,

- Introduction to Deepfake
- Deepfake Techniques and Classification
- Deepfake Mitigation
- Introduction to PUF
- Proposed PUF-based Facial Feature Attestation Scheme
- Experimental Validation
- Conclusion & Future Research Directions

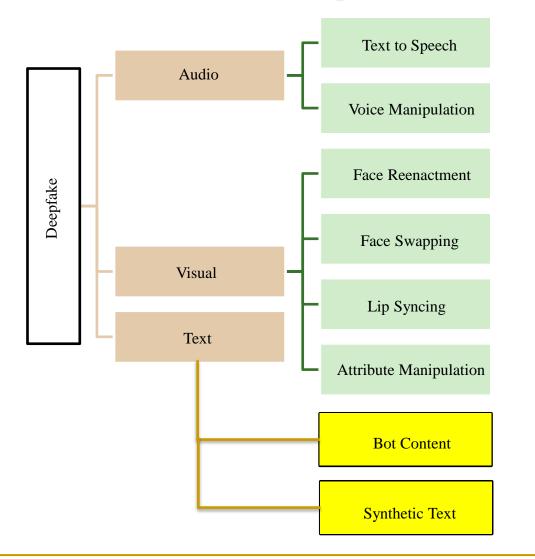
Deepfake

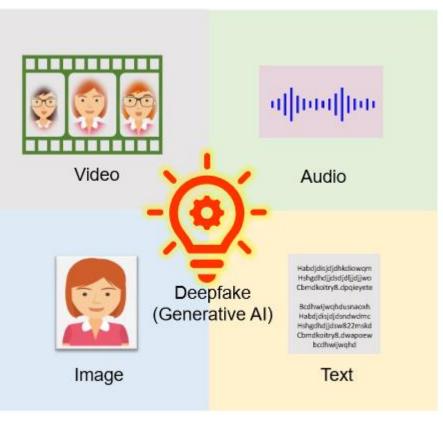
Al can be fooled by fake data

Al can create fake data (Deepfake)

Attribute Manipulation

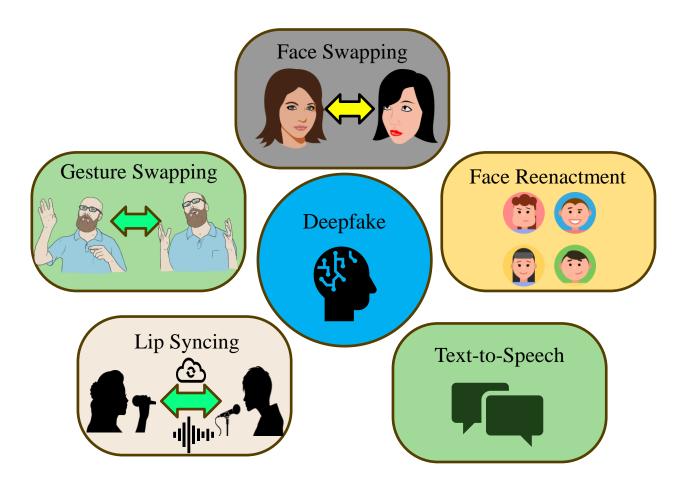
Identity Swapping


Target image

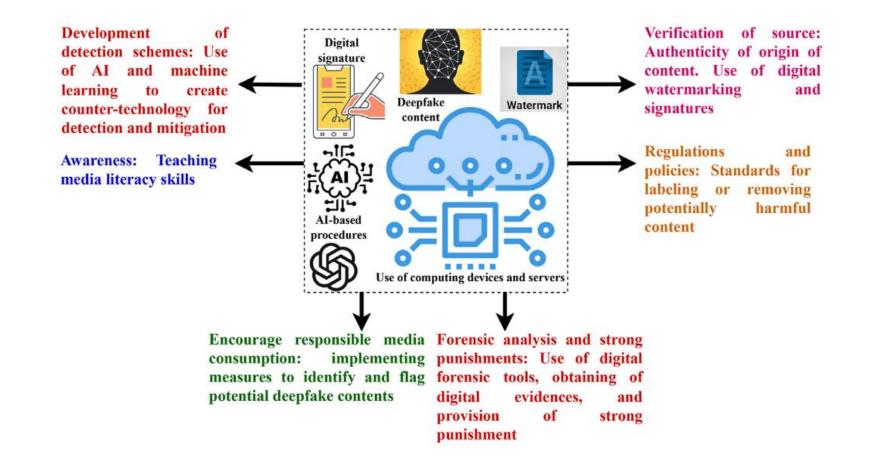

- Deepfake refers to super realistic, but fake images, sounds, 1. and videos generated by machine learning methods.
- Deepfake leverages a Generative adversarial network (GAN) 2. which enables the modification of human faces in a video or image.
- Deepfakes can be classified as Audio, Visual and Text 3.

Source: A. Malik, M. Kuribayashi, S. M. Abdullahi and A. N. Khan, "DeepFake Detection for Human Face Images and Videos: A Survey," in IEEE Access, vol. 10, pp. 18757-18775, 2022, doi: 10.1109/ACCESS.2022.3151186.

Deepfake Classification



Source: A. Mitra, **S. P. Mohanty**, and E. Kougianos, "<u>The World of</u> <u>Generative AI: Deepfakes and Large Language Models</u>", *arXiv Computer Science*, <u>arXiv:2402.04373</u>, Feb 2024, 9-pages.



Deepfake Techniques

Deepfake Mitigation



Source: Wazid, M., Mishra, A. K., Mohd, N., & Das, A. K. (2024). A Secure Deepfake Mitigation Framework: Architecture, Issues, Challenges, and Societal Impact. *Cyber Security and Applications*, 100040.

6

Threat Model

Addressing visual Deepfake of individual content captured as a video/image is important and necessary to counter facial attribute manipulation which includes modifying facial attributes like eyes, nose, lips and replacing them with target's attributes.

7

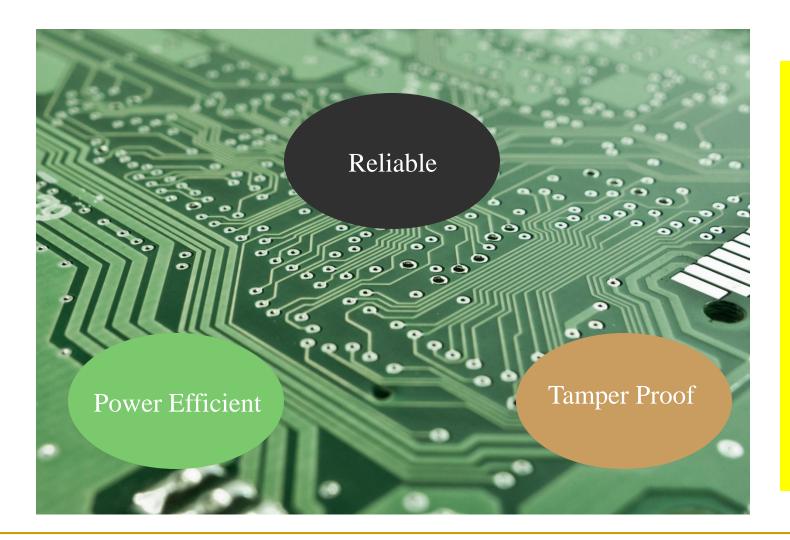
Related Research

Work	Approach	Techni que	Methodology	Tools	Features
Kato et.al [5]	Mitigation	Visual	Scapegoat Image Generation	StyleGAN2	Privacy and Anonymity
Zheng et.al [23]	Mitigation	Visual	PUF-based device and data hash	CMOS Image sensor	Image content authenticity
Krause et. al [8]	Detection	Audio	Language and phoneme focused	Logistic regression	Detection using mouth movements
Pishori et.al [15]	Detection	Visual	Eye Blink rate	CNN+RNN, OpenCV	Efficient through eye blink rate detection
Wang et.al [17]	Mitigation	Visual	GAN based secret message embedding in an image	GAN	Personal photo protection
Zhao et.al [22]	Detection	Visual	Image watermarking	Neural network with encoder and decoder	Effective image quality preservation
Ashok et.al [16]	Detection	Visual	Training XceptionNet using faceforenscis++ dataset	XceptionNet Model	Identifying Deepfake from Original content
Doan et.al [2]	Detection	Audio	Identifying silence, breathing, talking in an Audio	RawNet2	Biological sound-based detection
PUFshield (Current Work)	Mitigation	Visual	PUF-based Facial Feature Attestation	PUF, Dlib Facial detection and landmark prediction	Image and device integrity

Novel contributions

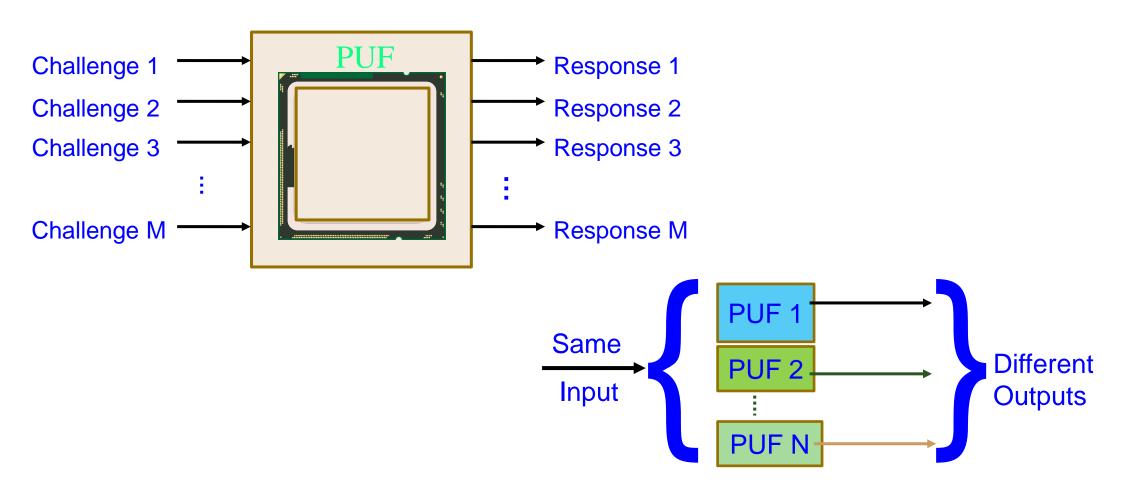
- A secure digital content integrity verification scheme through hardware enabled attestation.
- Presenting a state-of-art PUF-based approach for digital content attestation.
- A state-of-art solution for countering facial attribute manipulation to prevent visual Deepfakes.
- A device security framework providing PUF-based digital fingerprint for the camera capturing image/video.
- An approach to counter Deepfakes countering facial attribute manipulation.

Physical Unclonable Function (PUF)-Introduction

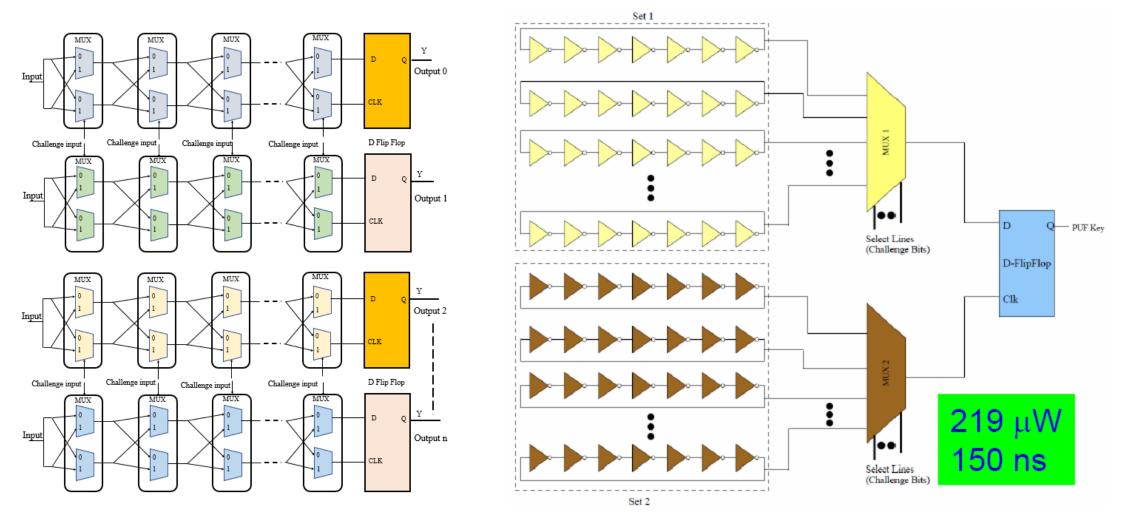

Why PUFs?

- Hardware-assisted security.
- Key not stored in memory.
- Not possible to generate the same key on another module.
- Robust and low power consuming.
- Can use different architectures with different designs

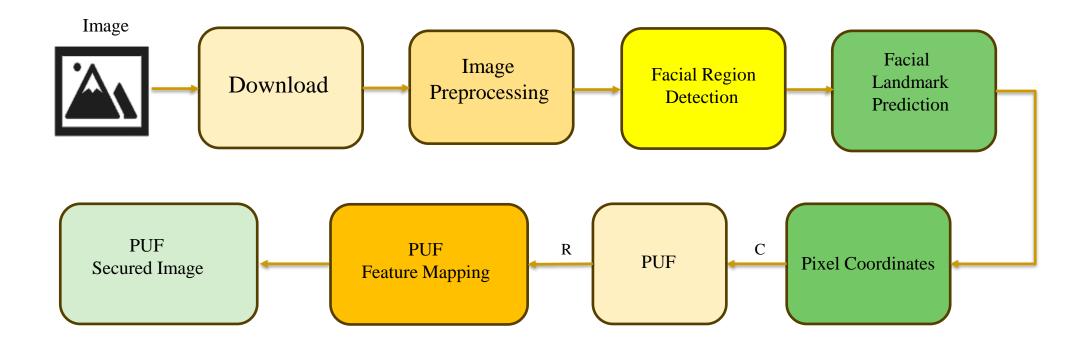
11


PUF: A Hardware-Assisted Security Primitive

A secure fingerprint generation scheme based on process variations in an **Integrated Circuit** PUFs don't store keys in digital memory, rather derive a key based on the physical characteristics of the hardware; thus secure. A simple design that generates cryptographically secure keys for the device authentication


PUF Key Generation and Working

Source: International Symposium on Smart Electronics Systems (iSES) 2019 Demo (PUFchain: Hardware-Integrated Scalable Blockchain)

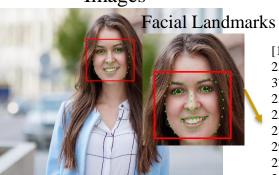

PUF Designs

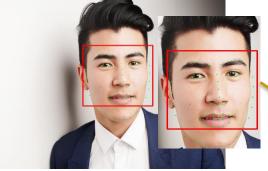
Source: iSES 2019 Demo (PMsec: PUF-Based Energy-Efficient Authentication of Devices in the Internet of Medical Things (IoMT))

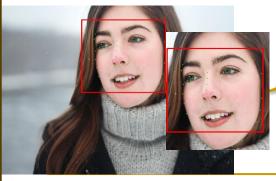
PUFshield: Proposed Deepfake Mitigation Technique

15

Facial Landmarks Coordinates in Dlib

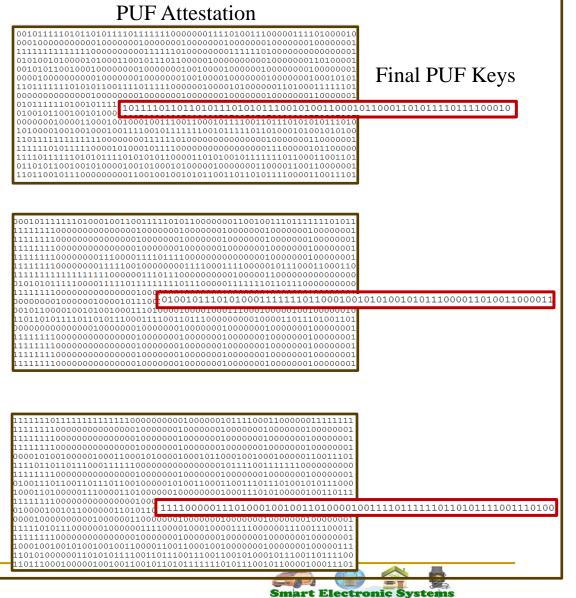

Facial Landmarks	Pixel Coordinates
Left Eye	36-41
Right Eye	42-47
Left Eyebrow	17-21
Right Eyebrow	22-26
Jaw	0-16
Nose Bridge	27-30
Lower Nose	31-35
Outer Lip	48-59
Inner Lip	60-67


Working Flow of PUFshield:					
Step 1 : Capture Image					
Step 2 : Perform Image Preprocessing					
Image → 600 X500					
Image → Gray Scale					
Step 3 : Perform Facial Region (Rol) Detection					
Histogram of Gradients \rightarrow Rol					
Step 4 : Access PUF at the Camera					
Step 5 : Obtain Facial Landmarks Pixel Coordinates					
Step 6 : Facial Landmarks → PUF → R1					
Extract for a set of 8 coordinates at a time					
Extract for all 68 facial landmarks R1R17					
Perform XOR Operation of all facial coordinates					
Step 7 : Final image fingerprint is final XORed output					



Experimental Validation of PUFshield

Images

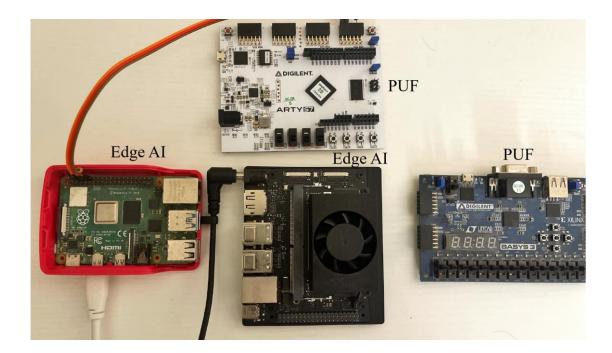


Facial Landmark Coordinates

[119, 235, 124, 266, 131, 297, 142, 328, 157, 357, 179, 383, 210, 402, 239, 417, 274, 422, 307, 413, 333, 396, 356, 373, 371, 344, 376, 311, 378, 277, 381, 245, 379, 212, 146, 199, 161, 182, 184, 175, 209, 175, 232, 182, 273, 179, 294, 169, 318, 166, 342, 171, 359, 187, 254, 193, 257, 209, 259, 226, 262, 243, 236, 270, 249, 271, 263, 273, 276, 269, 289, 267, 175, 208, 190, 201, 204, 199, 221, 206, 205, 208, 190, 209, 290, 202, 305, 193, 320, 193, 335, 200, 321, 202, 306, 202, 211, 327, 229, 312, 251, 301, 267, 304, 281, 299, 301, 308, 321, 320, 304, 340, 284, 350, 270, 353, 254, 352, 232, 344, 220, 327, 252, 313, 268, 314, 281, 311, 312, 321, 283, 333, 269, 336, 253, 334]

[242, 205, 243, 230, 246, 257, 251, 282, 260, 306, 275, 326, 292, 342, 314, 353, 337, 355, 357, 348, 373, 331, 386, 310, 396, 288, 402, 263, 404, 240, 405, 216, 404, 194, 260, 179, 271, 165, 287, 160, 304, 163, 320, 168, 342, 166, 355, 159, 369, 155, 383, 157, 391, 168, 333, 188, 335, 205, 336, 222, 338, 240, 320, 255, 329, 257, 337, 258, 344, 256, 351, 253, 279, 195, 287, 189, 298, 188, 307, 194, 299, 197, 288, 198, 352, 191, 360, 184, 370, 183, 377, 188, 371, 192, 362, 193, 300, 290, 313, 282, 326, 278, 335, 281, 345, 278, 356, 281, 366, 285, 357, 298, 346, 306, 335, 308, 325, 308, 312, 302, 305, 290, 326, 288, 336, 289, 345, 287, 360, 287, 345, 291, 335, 293, 326, 292]

[245, 134, 244, 159, 247, 184, 253, 210, 263, 235, 275, 259, 290, 281, 309, 296, 331, 300, 355, 294, 377, 279, 395, 257, 409, 231, 417, 201, 421, 170, 423, 137, 421, 107, 241, 99, 244, 84, 257, 78, 271, 77, 284, 82, 309, 74, 328, 63, 349, 58, 371, 63, 386, 76, 299, 104, 299, 119, 298, 134, 297, 150, 293, 176, 299, 177, 305, 176, 313, 173, 321, 170, 254, 124, 259, 114, 270, 111, 283, 117, 272, 122, 261, 125, 331, 107, 339, 97, 352, 95, 365, 101, 355, 106, 342, 108, 287, 224, 291, 211, 301, 203, 310, 203, 319, 199, 337, 202, 358, 210, 343, 231, 328, 242, 318, 245, 308, 245, 296, 239, 290, 222, 303, 211, 312, 210, 321, 208, 353, 211, 324, 229, 315, 232, 305, 232]

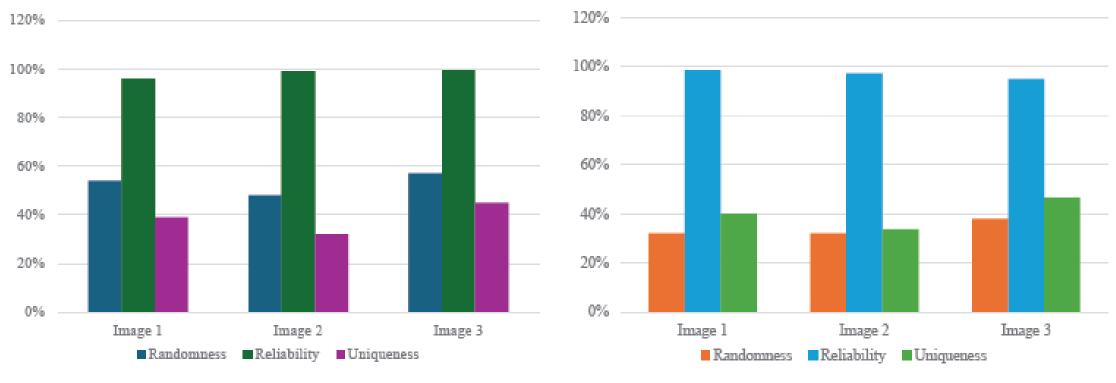

Laboratory (S

UNT

17

Performance Analysis

Prototype


Computational Time Analysis

Content	Parameter	Results
Image 1	Facial detection Facial Landmark Prediction	60 ms 3 ms
Image 2	Facial detection Facial Landmark Prediction	57 ms 2 ms
Image 3	Facial detection Facial Landmark Prediction	56 ms 3 ms
All images	Attestation Time	300 ms

18

Image Attestation Metrics

(a) Artix -7 FPGA

(b) Spartan-7 FPGA

Conclusion and Future Research

- This research work presented and validated a state-of-art Deepfake mitigation technique that utilizes the potential of PUF for secure facial feature mapping and attestation.
- The proposed work experimentally validated the PUF-based facial feature attestation process for an image. This work can effectively counter Deepfake particularly facial attribute manipulation technique.
- The metrics evaluation results and computational time and power analysis on various hardware clearly demonstrates the potential of the proposed PUFshield.
- As a direction for future research, countering other techniques of visual Deepfakes such as face swapping, lip syncing in video and audio Deepfakes using PUF can be potential areas for PUF-based Deepfake mitigation.

Thank You!

21