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Agriculture: The Foundation of Life

= Agriculture I1s the foundation of
the food system.

= Agriculture Is a major contributor
to the global economy.

= The global human population Is
projected to reach 9.7 Dbillion by
2050 and 10.9 billion by 2100.

= Ensured Food security and food
safety.
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Evolution of Smart Agriculture

Traditional
Agriculture

= Manual labor,
experience-based
decision-making, simple
tools.

= Synthetic

Green
Revolution

fertilizers,
pesticides, and high-yield
crop varieties .

Precision
Agriculture

= Sensors, and data
analytics for
automation.

Smart
Agriculture

= |0T, machine learning, and
big data analytics.
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Agricultural Cyber-Physical Systems (ACPS)

= ACPS: A system that integrates physical entities, sensors,

and digital technologies for real-time monltorlng and
control of agricultural processes. *

= Plant diseases lead to economic H;}ﬂ l
losses, need timely intervention. T e

= ACPS facilitates early disease = '
detection using computer vision. o7

= Continuous monitoring via ACPS

allows for effective damage —==fh
control.

Disease management ACPS
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How Computer Vision Works?

Data Driven
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The Problem

~

Adding a new class to the
classifier needs
computationally intensive

retraining.

A

Apple Rust Apple Scab Apple Black Rot  Cherry_ Powdery
Mildew

_/

Orange Corn Gray leaf Crn Rust Corn Northern Corn Healthy Grape Black rot
huanglongbing __spot Leaf Blight
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Developing a model that B
can detect all the diseases
needS a. huge n u m ber Of ) Gr; ck Grape Lea Blight Gljapeﬁhy Peach Bacterial Peach Healthy bPepp?rll;ell

labeled images. ) B
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Pepper Bell Soyabean Healthy Squash Powdery Strawberry Leaf Strawberry Tomato Bacterial
Health

Mildew scorch

There are large number of
plant types and various
diseases in each of them.

;'_»;‘ ) -
/ Tomato Early Potato Early Potato Late Blight Tomato Spider Tomato Leaf Tomato Septoria
Blight Blight Mites Mould Spot

Different types of plant diseases
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Alternative to Data Driven Methods?

Knowledge Driven! |

> EXx: Human Vision

& Training o

& , N

Apple scab disease
=5 > ® | cxhibitsblack | mp

3 patches on the leaf y
Labeled Image Human Semantic Knowledge
\_ (Apple Scab) ~ Cognitive Skills Understanding Update

Adding a new class needs a small knowledge update.
Since needed cognitive abilities are present, no training is required.

@ Classification )

4 ) Q
An apple leaf with
= ’@ mp | black patches on the | mp @
surface
- v
Image Human Semantic Knowledge
Cognitive Skills Understanding Search
4
[ Apple }
Scab
& Label /
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Related Works

Factors considered

Park, et al. 2004 Texture features classified Lacks semantic
by neural network understanding

Agrawal, et al. 2011 Color histograms are Lacks semantic
classified by a SVM understanding

Vailaya, et al. 2001 Low level features are used Adding new class needs
hierarchically to classify retraining of Bayesian
Image networks

Yang, et al. 2007 Bag of visual words Lacks semantic

understanding
Su, et al. 2012 Bag of visual words and Adding a new class
semantic attributes needs re-training

Sm Electronic Systems
Semantic-Search atory (SESL)
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Related Works

Factors considered

Remark

Marino, et al. and 2017 Searching knowledge map Implementing and
Menglong, et al. 2019 with objects detected In traversing knowledge
the image maps Is complex
Jearanaiwongkul, 2018 Ontology based Not fully automated,
et al. classification using farmers findings are
farmer’s findings used as Inputs
Semantic- 2024 Semantic understanding Has semantic
Search with knowledge base understanding and

(Current Paper)

search

does not need
retraining
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Proposed Solution

= Each disease In a plant Is just a combination
of a few visual features like patterns, shapes,

textures, and colors.
» For example, Apple Scab and Grape Leaf Blight
exhibit brown to black spots on the leat. Apple Scab

= By understanding the disease semantically
and searching the knowledge base with the
Information, most of the diseases can Dbe

classified.

Grape Leaf Blight

S Electronic Systems
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= An expert creates a

Overview of Proposed “Semantic-Search”

The Neural Networks
are trained to detect
Disease Semantics.

database for all plant

diseases, with their i

semantic features.

By guerying this
database, the disease
can be classified.

-

Labeled Image
(Apple Scab) Cognitive Skills Understanding

Apple scab disecase
- > - exhibits black
patches on the leaf
- A

Training
@ ™

Human Semantic Database

Update
e/

Adding a new class needs a small database update.
Since cognitive abilities are already present, no training is required.
Classification
An apple leaf with
black patches on the
f;
. 1 surface P
i Cognltlye Semantlg Database I-Bel
3 Computing Understanding Query )
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Comparison to State-of-the-Art

Manual feature engineering
and rule-based

Traditional
Methods

Time-consuming and
lack adaptability

Pattern recognition

Deep
Learning

Lacks interpretability and
need a lot of images

9/26/2024
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Novel Contributions

Semantic Understanding

* Method focuses on analyzing patterns, and objects in the diseased area.

Knowledge-Driven Approach

* The classification proposed Is driven by a knowledge Database.

Interpretability and Explainability

* Presents the description of the disease explaining the classification decision, not
a block box.

Generalizability

* Proposed Neural Networks have the cognitive ability to detect semantics, and
can be used for any plant disease.

Semantic-Search

9/26/2024
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Proposed Feature Engineering

= 20 different plant diseases were examined to semantically
describe each disease and hand-pick the semantics.

Semantics Instances

Shape Spot (Spots, Lesions, Patches), Flecks,
Curls, Stripes
Color Yellow, Purple, Orange, Black, Brown,
White, Red
Texture Powdery, Mosaic, Velvety

Overview of Semantics engineered
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Plant

Proposed Feature Engineering

Disease Semantics

Apple Black rot Flecks or lesions which are brown Objects: Flecks, Lesions
INn the center and purple at margin  Colors: Brown, Purple
Apple Powdery White velvety patches on Texture: Velvety
mildew the underside of leaves Color Is redundant
Grape Leaf blight Small, brown-black spots Objects: Spots
Colors: Brown, Black
Tomato Black mold  Appearance of black or brown ODbjects: Lesions
lesions Colors: Black, Brown
Tomato Mosaic Infected leaves exhibit dark green Texture: Mosaic
VIrus mosaic Color Is redundant
Tomato Blight Yellow chlorotic lesions Objects: Lesions

Colors: Yellow

A brief overview of a few disease semantics.

9/26/2024
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Proposed Entity Relationship

Diseases
1 Grape Leaf blight
2 Tomato Black mold
3 Apple Powdery mildew
Disease colors Disease Shapes Disease Textures
| | | | 1 Null
| 2 2 | 2 Null
2 | 2 2 3 2
2 2 3 Null
3 Null
Texture Shape Color
Velvet 1 Spot 1  Black Orange
2  Powder 2 Fleck 2 Brown 6 Purple
3  Mosaic 3 Curl 3  Yellow 7 White
4  Stripe 4 Red

Entity-Relationship diagram of the database.

Semantic-Search
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Proposed Method

= The proposed Semantic-Search has the following
components working In sequence.

Semantic-Search

9/26/2024
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Proposed Method

=D

The leaf in the image is localized by fitting a contour NO If spots/stripes are
around the leaf present

YES

Regions of interest (ROI) are defined along the edges

and center of the leaf Individual instances of spots and stripes are localized

using image segmentation by CNN

The entire leaf 1s classified using CNN to identify textures

like velvety, powdery, and mosaic preset on the leaf Colors present in the localized instances are
Identified using pre-defined filters

If any texture Is YES
present l
0 The database of plant diseases Is queried with the features
Identified to classify the disease and assign a corresponding label

ROIs along the edges of the leaf are classified to
identify if the leaf is curled using the CNN

Description of the disease Is generated with the features identified
and presented to the user along with the label

The ROI at the center Is classified using CNN to identify if shapes T
like flecks, spots, and stripes characterize the disease < >
Stop

Working of Semantic-Search.
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Implementation

The proposed "Semantic-Search” has been experimentally
validated on the PlantVillage database with 2000 images
of 20 different diseases from 5 types of plants.

The solution was developed In Python using Tensorflow
and Keras libraries.

CNNSs were used for image detection, and classification.
SQLite was used to create and manipulate SQL Server
Proposed method achieved an accuracy of 94%.
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Implementation

# Define the Lower and upper bounds for each color in H5V color space

color _ranges = {
‘orange’:(np.
‘wvellow' :(np.
"brown’: (np.
‘black’: (np.
‘purple’:(np.
‘white': (np
‘red’ (np.

‘green’: (np.

array(|
array(|
array(|
array(|
(187, 86,88]), np.array([281,255, 255])),

array(

.array(]|
array(|
array(|

@, @, @]), np.array([255, 8@,

@,228, @]), np.array([255,255,

Color Filters

25, 8@,80]), np.array([29, 255, 255])),
39, 8@,80]), np.array([46, 255, 255])),
18, 86,88)), np.array([24, 255, 255])),

88])),

20])),

@, 88,88]), np.array([9,255, 255])),
te, 8@, 88]), np.array([11@,255, 255])),

Database Structure

/i Create Table

Browse Data Edit Pragmas Execute S0L

¢y Create Index [B]F‘rint

Mame

v || Tables (&)

;

W O B W W W W

| colors
| disease_colors
| disease_shapes

| disease_textures

| diseases

| shapes

| sqglite_sequence
=] textures

Type Schema

CREATE TABLE colors ( id INTEGER PRIMARY KE
CREATE TABLE disease_colors [ disease_id INT!
CREATE TABLE disease_shapes ( disease_id INT
CREATE TABLE disease_textures [ disease_id Ih
CREATE TABLE diseases ( id INTEGER PRIMARY
CREATE TABLE shapes ( id INTEGER. FRIMARY K
CREATE TABLE sqlite_sequence(name,seq)

CREATE TABLE textures ( id INTEGER PRIMARY

SQL Database

9/26/2024
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Results: Instance 1
Apple leaf with Ceder Rust disease

Input Image Leaf localized by contour fitting

Rol defined

9/26/2024
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(1, 1
Shape

Teaxt

Results: Instance 1

Apple leaf with Ceder Rust disease

00, 100, 3)
of images array: (1, 100, 100

ure of leaf is: Others

Texture prediction

, 3)
] - 3s 3s/step

=)

(5, 100, 100, 3)
Shape of images array:
1/1 [==============================] - 25 2s/step

Objects
Objects
Objects
Objects
Objects

in

Rol
Rol
Rol
Rol
Rol

defined 1
defined 1
defined 1
defined 1
defined 1

The leaf has spots

(5, 100, 100, 3)

leaf: Spots
leaf: None
leaf: None
leaf: Spots
leaf: None

Object prediction
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Results: Instance 1
Apple leaf with Ceder Rust disease

Original Image Original Mask Boundary Image

Object localization by segmentation

> \ .:l.‘f*"\-.li‘.- N ;
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Results: Instance 1
Apple leaf with Ceder Rust disease

Color Histogram s 1
1500 1 SELECT d.disease name
--E . FROM diseases d
2 3 JOIN disease shapes ds ON d.id = ds.disease id
o lDﬂ'ﬂ ] 4 JOIN shapes 3 ON ds.shape id = s3.1d AND s.value = 'spots'
"E 3 JOIN disease colors dc ON d.id = dc.disease_id
e B JOIN colors c ON dc.color id = c.id AND c.value IN ('yellow', 'brown', 'orange')
E 7 WHERE d.plant name = 'apple'’
E 500 - 8 GROUP BY d.disease name
| 9 HAVING COUNT (DISTINCT =s.id) = 1
= 10 AND COUNT (DISTINCT c.id) = 3;
0 ! ! | ! ! ! : : disease_name
Drange‘yre”ﬂw brown black pur‘ple white red green S : ] _
Colii veedarrust  m==p | @abel predicted by Semantic-Search
Colors identified Query performed with identified semantics

Semantic-Search
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Results: Instance 2

Cherry leaf with Powder}/ Mildew disease

Leaf localized, Rol defined

(1, 1ee, 1lee, 3
Shape of images array: (1, 188, 1lee, 3)
1/1 [==============================] - 05 93ms/step
Teaxture of leaf is: Powdery
Texture prediction

¥

Uisor1 B

1 SELECT d.disease name

2 FROM diseases d

3 JOIN disease textures dt ON d.id = dt.disease_id

4 JOIN textures t ON dt.texturse id = t.id

3 WHERE d.plant nams = 'cherry' AND t.wvalus = 'powdsr';

o

< >
disease _name

1 powdery midew = Label predicted by Semantic-Search

Query performed with identified semantics

9/26/2024
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| eaf localize

Results: Instance 3
Corn leaf with Common Rust disease

(1, 100, 100, 3)

Shape of images array: (1, 100, 100, 3)
] - @s 96ms/step

Teaxture of leaf 1s: Others

Texture prediction

, Rol defined

9/26/2024
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(5, 100, 100, 3)
Shape of images array:

Objects
Objects
Objects
Objects
Objects

in

Rol

C

efined
efined
efined
efined
efined

The leaf has Flecks

in leaf:
in leaf:
in leaf:

in leaf:
in leaf:

Object prediction

Results: Instance 3
Corn leaf with Common Rust disease

100, 3)

Flecks
Stripes
Spots
Flecks
Spots

] - @s 94ms/step

=)

| soL1 B3

1 SELECT d.disease name

2 FROM diseases d

3 JOIN disease shapes ds ON d.id = ds.disease_1id

4 JOIN shapes 3 ON ds.shaps i1d = 3.1d

3 WHERE d.plant nams = 'corn' AND s.wvalus = 'flscks';

G

< >

disease name

1 common rust = L abel predicted by Semantic-Search

Query performed with identifled semantics

9/26/2024

Semantic-Search

e, £ V\
ey \1&9 =

Sm Electronic
atory (S
. DEPARTMENT CF OOMFUTER -
UNT incstondine o
i EST. 1890

28



Conclusion and Future Work

The process of defining ROI In the leaf tries to find the
largest rectangle possible inside the contour.

In cases of narrow and curved leaves, the ROI defined could
become smaller and may not include the diseased regions
The classification method used Is static and does not
change with the semantics detected.

The usage of attention mechanisms and transformers to
develop dynamic methods specific to the semantics present
IN the diseased can be explored in future works.

9/26/2024
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Thank You !!
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