Fortified-Edge 5.0: Federated Learning for Secure and Reliable PUF in Authentication Systems

Presenter: Seema G. Aarella

Seema G. Aarella¹, Venkata P. Yanambaka², Saraju P.Mohanty³, Elias Kougianos⁴

University of North Texas, Denton, TX 76203, USA.^{1,3,4} Texas Woman's University, Denton, TX, USA.²

Email: Seema.Aarella@unt.edu¹, vyanambaka@twu.edu², Saraju.Mohanty@unt.edu³ and Elias.Kougianos@unt.edu⁴

Outline of the Talk

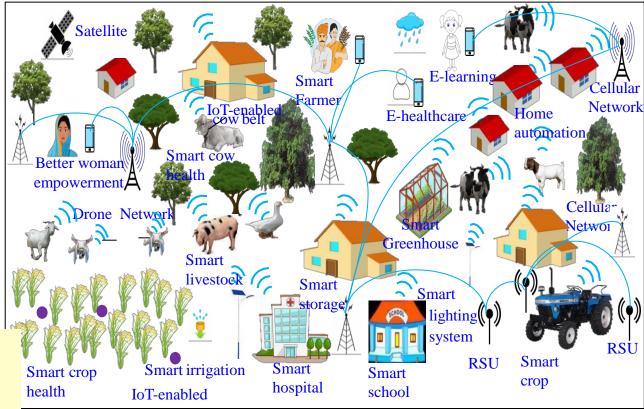
- Introduction
- Collaborative Edge Computing
- Security Challenges and Motivation
- Fortified Edge Concept
- Federated Learning Framework
- Experimental Setup
- Results and Analysis
- Conclusion

Smart Cities Vs Smart Villages

Source: http://edwingarcia.info/2014/04/26/principal/

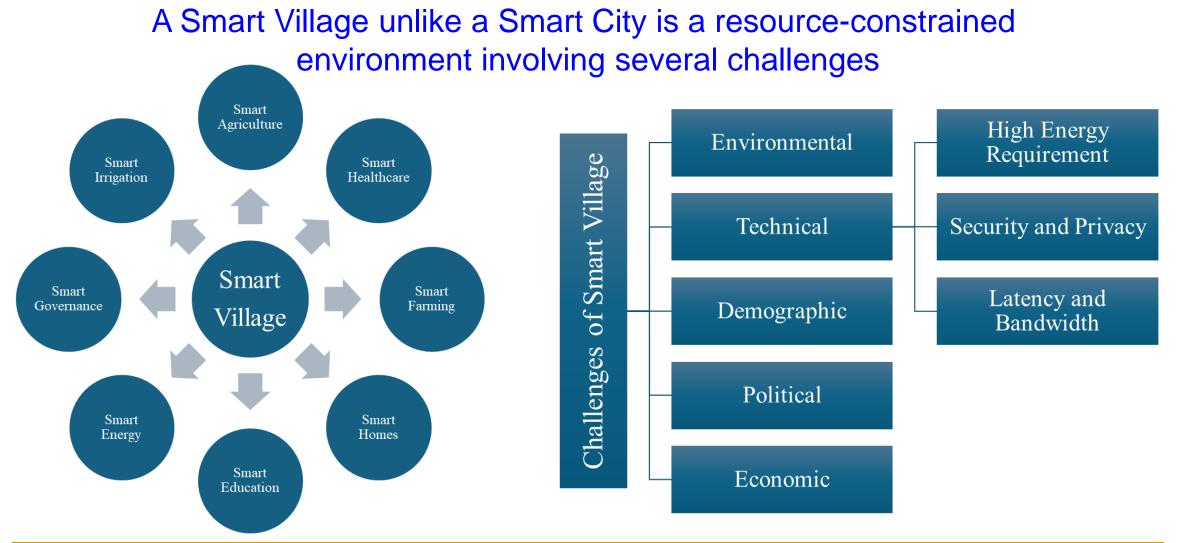
Smart CitiesCPCPS Types - MoreDesignDesign Cost - HighOpOperation Cost - HighEnergyEnergy Requirement - High

Smart Villages CPS Types - Less Design Cost - Low Operation Cost – Low Energy Requirement - Low



Source; P. Chanak and I. Banerjee, "Internet of Things-enabled Smart Villages: Recent Advances and Challenges," *IEEE Consumer Electronics Magazine*, DOI: 10.1109/MCE.2020.3013244.

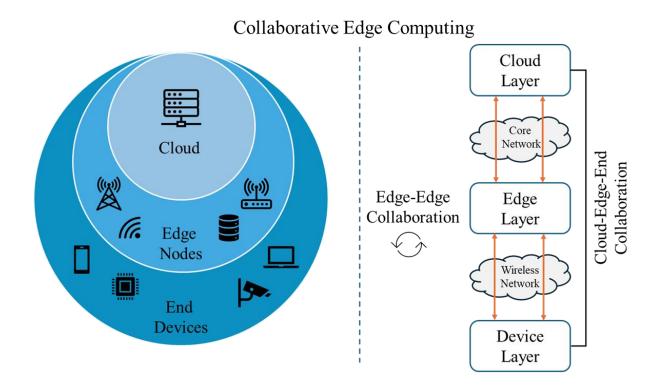
Introduction



Fortified-Edge 5.0: Federated Learning for SbD

Collaborative Edge Computing (CEC)

Collaborative Edge Computing enables IoT in smart villages

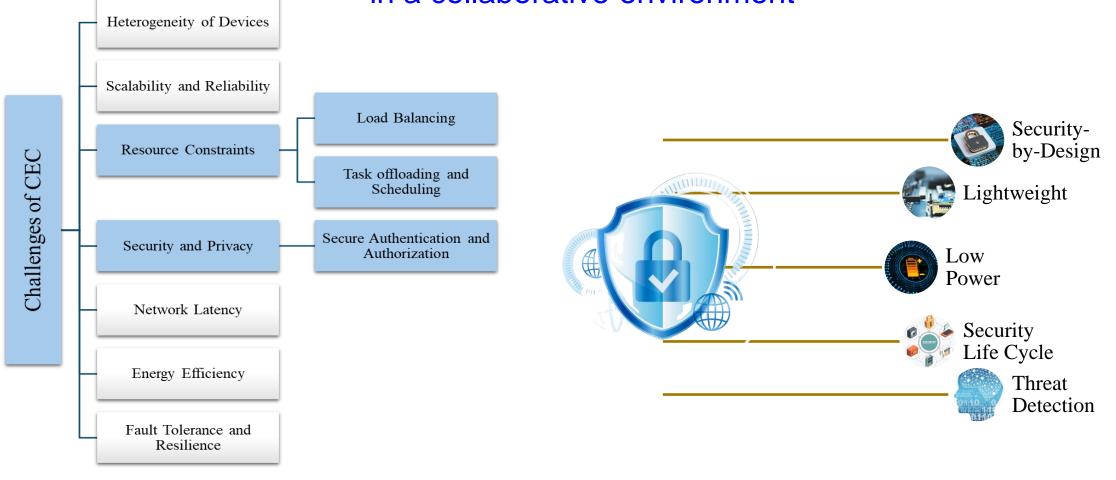


Collaborative Edge Computing

- Distributed processing environment
- Collaboration of distributed edge
- Smart control of heterogeneous network
- Reduced Bandwidth and Transmission costs
- Seamless processing through load balancing

Motivation

To develop a secure authentication system for Edge Data Center in a collaborative environment



6

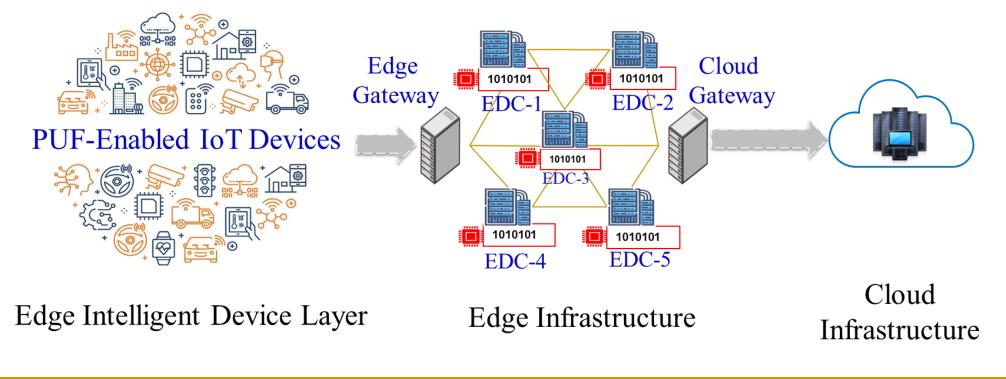
Smart Electronic Systems

Laboratory (SES

UNT DEPARTME SCIENCE & College of

Secure Authentication of EDC in CEC

Load Balancing in Collaborative Edge Computing

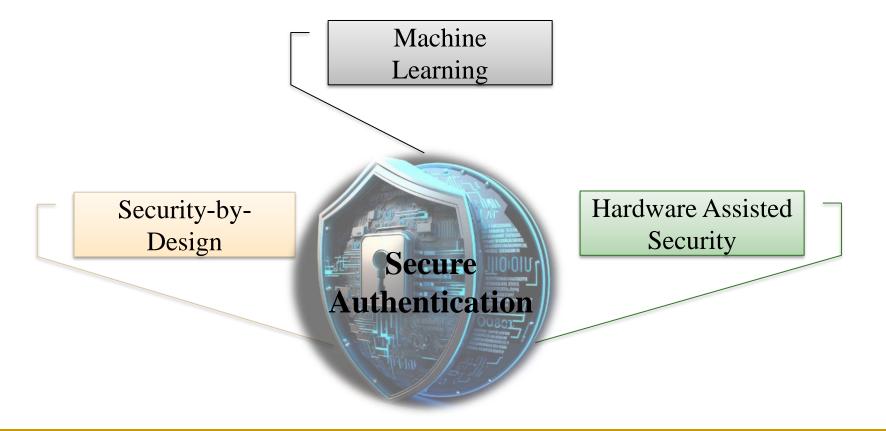


Long-Term Vision

Cybersecurity for smart villages based on the SbD principles for secure resource sharing in the CEC environment AI/ML for Cybersecurity in Smart Villages

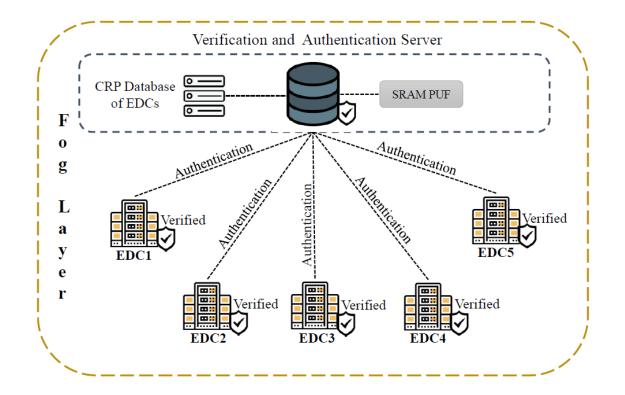
Our Fortified-Edge: The Key Idea

A lightweight and Secure Authentication scheme for EDCs during load balancing in the CEC environment of smart villages



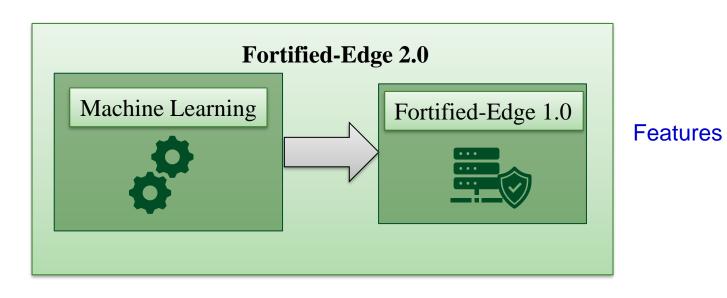
Fortified-Edge 1.0 - The Idea

- CEC enables applications in smart villages through load balancing
- To develop a secure authentication protocol for Load balancing
- Suitable for a smart village environment
- Incorporate Security-by-Design for smart and sustainable security



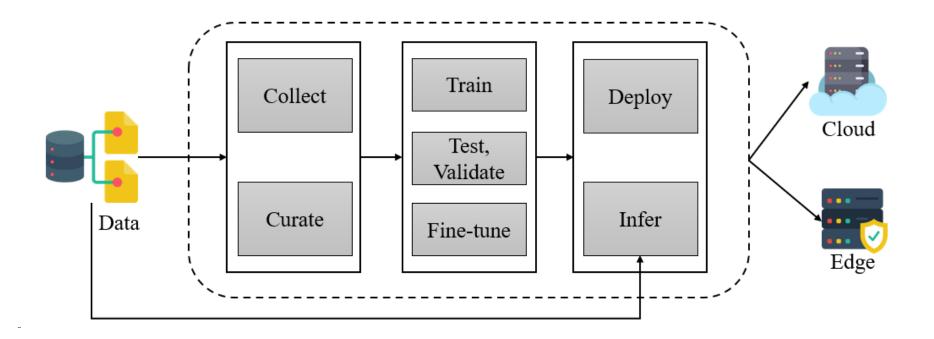
Source: S. G. Aarella, **S. P. Mohanty**, E. Kougianos, and D. Puthal, "<u>Fortified-Edge:</u> <u>Secure PUF Certificate Authentication Mechanism for Edge Data Centers in</u> <u>Collaborative Edge Computing</u>", in *Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI)*, 2023, pp. 249--254, DOI: <u>https://doi.org/10.1145/3583781.3590249</u>

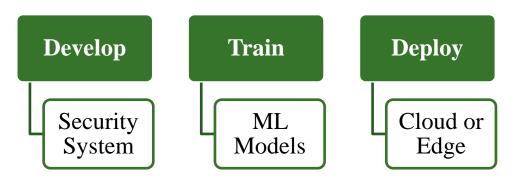
Fortified-Edge 2.0 - The Idea



- Secure, Low Latency Authentication
- Device identification
- Intrusion detection
- Attack Prevention
- EDC Monitoring
- Resilient against malicious Requests
- ML model suitable for a smaller dataset

Fortified Edge 3.0 Machine Learning for Edge

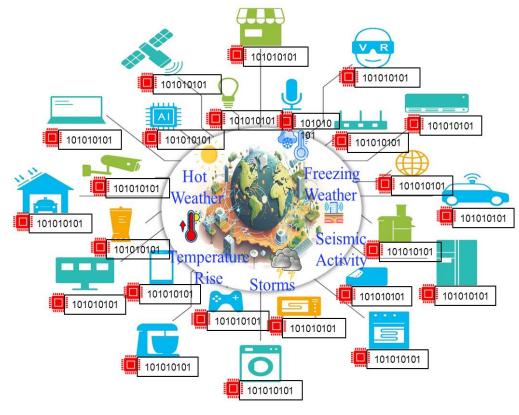




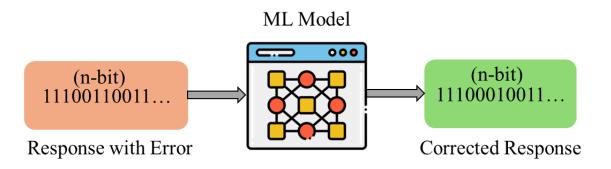
Fortified-Edge 5.0: Federated Learning for SbD

Fortified- Edge 4.0

Environmental factors cause bit flips in the PUF response



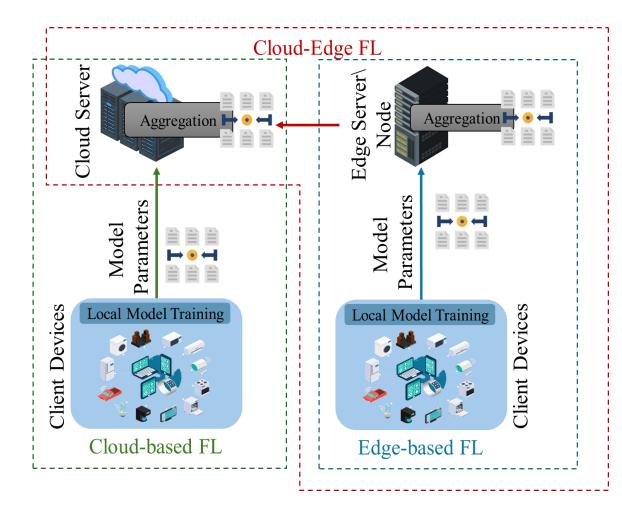
Machine Learning model to detect and correct the flipped bits



Fortified-Edge Research

Research	Algorithm	Application	Accuracy
Fortified-Edge 1.0	SRAM PUF-based Certificate	EDC Authentication	NA
Fortified-Edge 2.0	SVM	ML-based Authentication & Monitoring	100.0
Fortified-Edge 3.0	Lightweight ML models	Anomaly & Intrusion detection	99.33
Fortified- Edge 4.0	K-mer Sequence	PUF Response Bit Error Correction	99.74
Current Research Fortified-Edge 5.0	Federated Learning	PUF Response Bit Error Correction	99.00

Fortified-Edge 5.0 Motivation



- Improve reliability of PUF
- Bit error correction using Machine learning
- Federated Learning (FL) framework for distributed ecosystem
- The key aspects of FL are decentralized training, privacy preservation, and collaborative learning

Related Prior Research

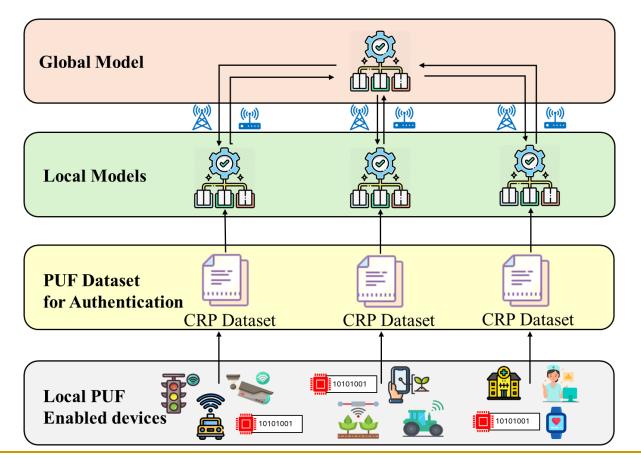
Research	Year	ML Algorithm	Dataset	Metrics
Karim et. al [10]	2023	RainForest	WEKA-Hypothyroid	Accuracy, Precision Recall, F1 Score
Jain et. al. [11]	2023	SGD	Adobe Stock	Accuracy
Korkmaz et. al. [12]	2022	Inception-v3	Medical Image Dataset	Accuracy
Chen et. al. [13]	2020	GRU and SVM	KDD CUP99	Accuracy, F1 Score
Mahadik et. al. [14]	2024	CNN	CIDDoS2019	Accuracy
Current Research Fortified-Edge 5.0	2024	K-mer Sequence	100k PUF Response Dataset	Accuracy

Novel Contributions of Current Research

- Exploring FL for edge computing in a collaborative environment
- FL model training and deployment that is efficient in computation and power consumption
- Proposing an FL-based framework for PUF bit error detection that uses an ML algorithm
- ML model training using a Natural Language Processing (NLP) approach
- Global Model aggregation through parameters received from local models
- Global and Local Model training and testing on edge devices for computational efficiency

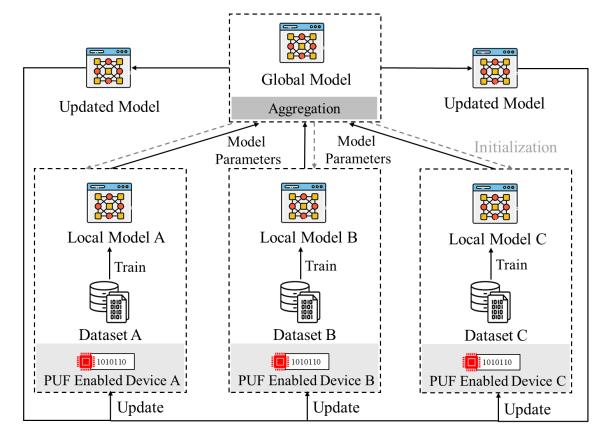
FL at Edge for PUF-based Authentication

FL enables access to diverse datasets without data sharing and with reduced data communication and storage requirements



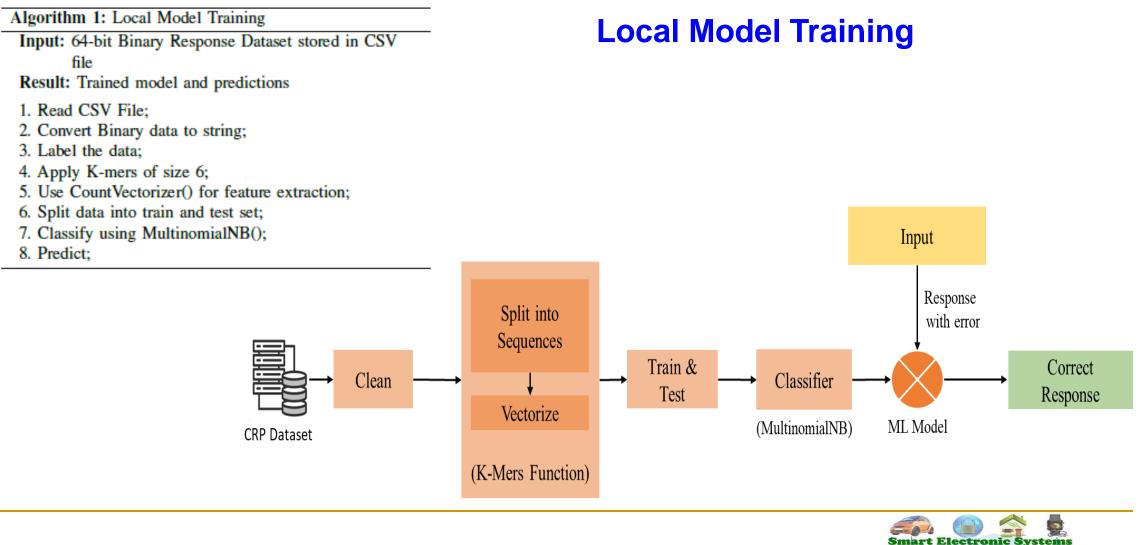
Fortified-Edge 5.0: Federated Learning for SbD

Proposed FL Framework



- Each Client is trained using a local model ML model
- The local ML model is responsible for generating the vectors for the extracted features from the PUF response and classifying
- K-mer sequencing and Count Vectorization for feature generation
- MultinomialNB is used for Classification
- Flower Framework to implement the federated client-server model
- Federated Averaging (FedAvg) is used for model aggregation

Process Flow



20

Laboratory (SEE UNT BEARTMENT OF COMPUTE SCIENCE BEARTERING Children of Computering

Process Flow

Server Side Evaluation

 Algorithm 2: Server Side Evaulation

 Input: Number of Clients, Model Parameters

 Result: Aggregation and Averaging

 1. Set the Number of clients;

 2. Start flower server;

 3. Request initial parameters from random client;

 4. if received parameters then

 Evaluate initial global parameters;

 Evaluate loss and accuracy;

 Start fit;

 end

 5. update the global model;

 6. Send updated global model to all clients;

Client Side Evaluation

Algorithm 3: Client Side Evaluation Input: Response dataset CSV file Result: Updated Model 1. Load data; 2. Preprocess data for client_n; 3. Train Local model; 4. if Trained then Start flower client; Send model parameters to server; Wait: end 5. if received updated model from server then Start fitting; Evaluate model: End model update; end

Experimental setup

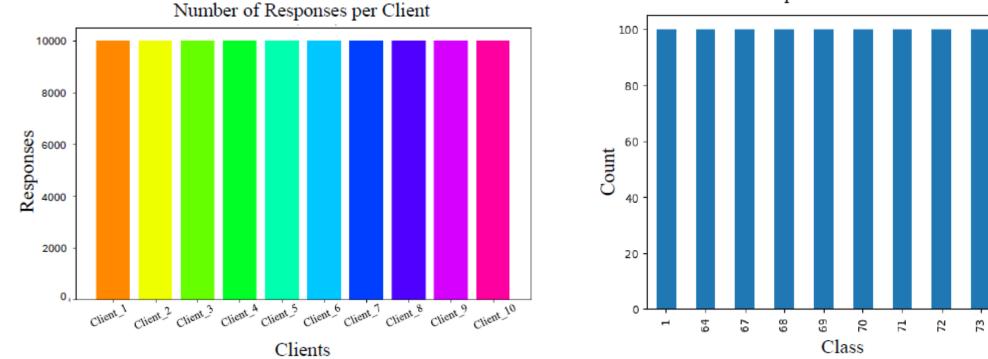
- This research uses the 64-bit Arbiter PUF architecture
- PUFs. PYNQ[™] Z2 FPGA which is based on Xilinx Zynq C7Z020 SoC used for PUF implementation
- Xilinx BASYS3 FPGA used to build PUF
- Raspberry Pi 4 is used as the client (10) and Server(1)
- Flower AI framework for FL model training and testing
- Each client is trained on a 10K PUF response dataset

Results and Analysis

10K PUF Response Dataset

Classification of Data

Top 10 Class Count



Confusion Matrix

Predicted	31	8	1	75	12	65	83	88	18	22
Actual										
31	36	0	0	0	0	0	0	0	0	0
8	0	30	0	0	0	0	0	0	Ø	0
1	0	0	28	0	0	0	0	0	0	0
75	0	0	0	28	0	0	0	0	0	0
12	0	0	0	0	27	0	0	0	0	0
65	0	0	0	Ø	0	27	0	0	Ø	0
83	0	0	0	0	0	0	27	0	0	0
88	0	0	0	0	0	0	0	27	0	0
18	0	0	0	0	0	0	0	0	26	0
22	0	0	0	0	0	0	0	0	Ø	26

- MultinomialNB classifier is used for classification
- The binary sequences are classified based on features
- The feature space for the local model is 506
- Each of the 10 clients are trained on a 10K dataset

FL Model Analysis

- The local model is trained on a 10K dataset
- 80% of the data is used for training and 20% for testing.
- The model can efficiently predict classes of new responses and be ready for client-side evaluation.
- To test for overfitting of the local model KFold cross-validation is done
- The accuracies obtained over 5-fold cross-validation are 98.75%, 99.3%, 99.65%, 99.8%, and 99.35%,
- With a mean accuracy of 99.37%.

Training Times & Power Consumption

- The server-side evaluation:
 - 3 server rounds are repeated in fitting the model parameters from 10 clients with 0 failures
 - The total time taken by the server to fit the global model is 154.62s
 - □ The server evaluation is increased for 10 rounds, the time taken to complete is 202.32s
- The client-side evaluation:
 - □ An average of 99.45% accuracy with 0.0 loss for all 10 clients.
 - The total time taken for local model training with initial parameter update is 6s
 - Total time taken for model update over 10 rounds is 130.42s.
- The idle power of the Raspberry Pi = 3.7W,
- Average power consumed for local model training = 4.5W

Comparative Table for State-of-the-Art Literature

Research	Year	ML Algorithm	Accuracy
Karim et. al [10]	2023	RainForest	0.99
Jain et. al. [11]	2023	SGD	0.94
Korkmaz et. al. [12]	2022	Inception-v3	0.8-0.99
Chen et. al. [13]	2020	GRU and SVM	0.99
Mahadik et. al. [14]	2024	CNN	0.99
Current Research Fortified-Edge 5.0	2024	K-mer Sequence	0.99

Conclusion

- FL framework is easy, scalable, and secure and enables the use of any ML algorithms for local model training
- The use of FL for PUF bit error correction has shown enhanced performance and prediction accuracy while providing data privacy and security
- Highly suitable for collaborative environment authentication system
- The CRP dataset need not be stored locally
- The accuracy and power consumption evaluations also prove that the model is suitable for edge deployment

Future Research

- The model can be further improved with secure ML model development strategies to preserve security and privacy
- The research can be taken forward to explore applications like Deepfake Detection and Data Forensics
- Secure Communication and Authentication with minimum data exposure
- Smart and sustainable security solutions

Thank you!

30

Fortified-Edge 5.0: Federated Learning for SbD