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ABSTRACT
Physical Unclonable Functions (PUFs) are widely researched in
the field of security because of their unique, robust, and reliable
nature, PUFs are considered device-specific root keys that are hard
to duplicate. There are many variants of PUFs that are being studied
and implemented including hardware and software PUFs. Though
PUFs are believed to be secure and reliable, they are not without
challenges of their own. The efficient performance of PUF depends
on various environmental factors, which leads to inefficiency. Bit
flipping is one such problem that can bring down the reliability of
the PUF. Memory-based PUFs are prone to unavoidable bit flips
occurring in the hardware, similarly, sensor-based PUFs are prone
to bit flips occurring due to temperature variation. The number
of errors in the PUF response must be minimized to improve the
reliability of the PUF in security applications. In this research we
explore the Machine Learning (ML) model based on K-mer sequenc-
ing to detect and correct the bit flips in the PUFs, hence fortifying
the PUF-based secure authentication system for authentication and
authorization of Edge Data Centers (EDC) in a Collaborative Edge
Computing (CEC) Environment.

CCS CONCEPTS
• Security and privacy→ Security in hardware; Distributed sys-
tems security; • Computing methodologies→Machine learn-
ing algorithms.

KEYWORDS
Collaborative Edge Computing (CEC), Cybersecurity, Security-by-
Design (SbD), Hardware Assisted Security (HAS), Physical Unclon-
able Functions (PUF), Machine Learning (ML), Error Detection,
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1 INTRODUCTION
The hardware security primitive corresponds to the use of different
types of PUFs, such as Memory PUF, Ring Oscillator (RO) PUF,
Arbiter PUF, Magnetic PUF, Optical PUF, and RF PUF. PUFs are
used in security applications where the unique response of PUF to
a given challenge is used as a feature for device identification and
authentication. PUF response however needs post-processing to im-
prove the reliability as compared to the raw response [15]. A reliable
PUF is expected to generate the same unique response for a given
identical challenge, however, the instability in the environment or
the PUF architecture causes the response to be different. For that
reason, the PUF cannot be considered reliable enough to be used
for cryptographic key generation and other security applications.
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Figure 1: Environmental Effects on PUF enabled IoT Devices

One of the measures taken to ensure the reliability of PUF is to
correct the erroneous bits generated by environmental factors like
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temperature variations, voltage variations, and aging effects. Based
on the geographic location the changes in environment affects the
performance of the PUF, as shown in the Figure 1. It has been
studied that change in temperature causes the PUF response bits
to flip, resulting in erroneous response. Therefore, it is important
to have an error correction system in place. An overview of the
PUF security model with a bit error correction system is shown in
Figure 2.
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Figure 2: PUF Security Model for Bit Error Correction

Many error-correcting modules can help generate the correct
responses by using the priorly obtained correct responses as helper
data. However, these modules will need more area overhead and
processing power, which is a drawback. Noisy bits, or error bits in
the PUF response can be corrected using the helper bits, also called
a syndrome. The syndrome or helper data is public information,
it is computed based on the PUF response and later sent along
with challenges to perform error correction on response bits. To
prevent the leakage of secret bits pattern matching algorithms
use the PUF function along with helper data for key generation
[17]. Error correction schemes that do not involve helper data and
uses the initial PUF response as a codeword are studied, it involves
coding and decoding algorithms for reconstruction of PUF response,
however the practical implications, and application to various use
cases are yet to be studied [13].

Edge-based authentication systems where PUFs are employed as
a lightweight robust key generation module for authentication of
edge devices and data centers are one of the areas that will benefit
from a lightweight yet reliable PUF. Fortified Edge proposes a secu-
rity scheme based on XORArbiter PUF for EDC authentication, the
system is further fortified with Certificate Authority based EDC
authentication using SRAM PUFs [2]. This research work is towards
improving the reliability of the PUFs that can be employed in the
CEC environment at the edge.

Machine learning based solutions for edge security that involves
authentication and authorization are researched and it is established
that they have low area overhead, low computational overhead ,
have the advantage of learning from new inputs, and the flexibility
to adopt suitable ML models based on requirements [1].

The paper is organized as follows: Related prior research in
section 2, novel contributions of the current paper is discussed
in section 3, problems and solutions proposed in section 4, need
for secure authentication and authorization is collaborative edge
computing is discussed in section 5, proposed framework in section
6, 7 discusess the experimental setup and section 8 has discussions
on results and analysis followed by conclusions in section 9.

2 RELATED PRIOR RESEARCH
A PUF is a digital circuit that possesses an intrinsic randomness
due to process variations during manufacturing, making it a unique

feature for representing a unique key, thus providing an unclon-
able identity for each chip. To ensure the reliability of the PUF
various error-correcting methods are used to address the PUF er-
rors, such as Replication-based redundancy, Error Correcting Codes
(ECC), Fuzzy extractors so on. A PUF-based authentication scheme
for Internet-of-Vehicles (IoV) is proposed in the research [18] de-
mostrates PUFs can resist external attacks, eliminate storage re-
quirements, increase security, reduce area overhead and computa-
tional overhead.

A novel Slender PUF is proposed in the research [12] that uses a
substring matching method to authenticate the responses generated
from a strong PUF with minimal information leakage. An automatic
self checking and healing (ASCH) system is proposed in research
[9] that removes all unstable PUFs, achieves ultra low bit error rate
(BER),this method does not need expensive temperature sweeps to
find unstable bits and reduces the cost of using ECC while being
enery efficient.

The paper [11] focuses on complexities of error correction meth-
ods for PUFs, considering requirements like response bits, helper
data bits, clock cycles and FPGA slices. A stastical Arbiter PUF
model was constructed to generate reliable responses from select
challenges independent of environmental condidtions, even if the
PUF error rate was high. This research proposes to selectively pick
the challenges that generate bit error free responses [8].

A comprehensive study on Helper Data Algorithms (HDAs) is
done in the research [7], where it discusses the various HDAs, their
efficiency, and open problems in the HDA-based error correction
scheme implementation. The research emphasizes global optimiza-
tion, secure testing, security against physical attacks, leakage re-
duction, and so on. It also reveals various new threats regarding
helper data leakage and manipulation.

A Configurable RO PUF (CRO PUF) is proposed in the research
[6], that has a bit error rate as low as 1x10−6, which eliminates the
need for ECC during key generation. This is achieved by improving
the existing CRO design to increase the number of possible config-
urations to 240 configurations per CLB tile. Eliminating the ECC
module will reduce the area overhead and power consumption, the
method achieved 100% reliability within the absolute maximum
rated voltage ranges of an FPGA.

A novel dynamic soft-decision fuzzy extractor is proposed in the
research [16], which utilizes the Gaussian error function to dynam-
ically derive the reliability of each PUF response bits. The model
was proposed for reducing post-processing overhead in CMOS im-
age sensor PUFs and enabling cryptographic security of camera
output images. The use of machine learning-based error detection
and correction methods gives more flexibility and deployability
options to the security system. Some of the research that uses ML
for improving the reliability of PUFs through various methods of
error detection, correction, and authentication process are listed in
Table 1.

3 NOVEL CONTRIBUTIONS OF THE
CURRENT PAPER

The proposed research is based on ML for PUF bit error detection
and correction, the model can be deployed at the device end to
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Table 1: Comparative Table for State-of-the-Art Literature.

Research Year ML Algorithm Application
Upadhyaya et. al. [20] 2019 Natural Redundancy decoders based on Machine Learning Error Correction

Suragani et. al. [19] 2022 Proof-of-Concept using CNN Classification of corrupted PUF responses

Chatterjee et. al. [5] 2020 Random Forest based PUF Calibration scheme Validate sensor data

Najafi et. al. [14] 2021 Deep CNN Recognize PUF responses under error conditions

Wen et. al. [21] 2017 Fuzzy Extractor PUF reliability

Current Research
Fortified-Edge 4.0

2024 K-mer Sequence PUF bit error correction

improve the reliability of the PUF. The following are the novel
contributions of the research:

• Novel machine learning method for bit error detection and
correction

• Data preprocessing done through visualization, data cleaning
• Sequencing methods used in DNA sequencing and Natural
Language Processing (NLP) applied to split PUF response
into chunks of sequences

• K-mer function used for vectorization of the sequences
• MultinomialNB classifier used for classification
• A deployable working model that can predict the correct
response from the response with error

4 PROBLEMS ADDRESSED AND SOLUTIONS
PROPOSED

Bit error correction in the response bits generated by the PUF is an
important feature in generating secure and reliable PUF responses
in cryptographic key generation and authentication applications
that use PUF as a lightweight hardware security primitive. How-
ever, some of the problems associated with bit error or noisy bit
correction are listed as follows:

• Area overhead added by the bit error correction module
• Computational overhead
• Extensive error correction schemes do not suit the light-
weight aspect of the security system

• Data leakage issues related to helper data in schemes that
use helper bits

• Secure storage of the helper data, an added feature making
the design complex

To overcome the said disadvantages, a novel machine learning-
based bit error correction scheme is proposed in this research that
has the following features.

• The area overhead and computational overhead is low as the
trained model is used at the device end

• There is no need to store the helper data
• Helper data leakage is not an issue as the trained model is
deployed at the device end

• The ML model is highly accurate in correcting the erroneous
response bits

5 FORTIFIED-EDGE ECOSYSTEM
Authentication and Authorization attacks accounts for critical se-
curity threat at the edge computing layer that can affect the user
devices, edge devices and edge computing resources. CEC is an
emerging paradigm where edge resources are utilized for faster and
local processing by resource sharing or task offloading through a
process called load balancing. During Load balancing the EDCs in
the environment off load tasks to other available EDC, but first the
EDCs must authenticate each other for security purpose. Fortified
Edge is a scheme that is independent of cloud and authentication
process happens at the edge. The use of PUF is to keep the compu-
tational requirements low, while keeping up the robustness.

Fortified-Edge model using PUF for authentication was imple-
mented and test for effectiveness at the edge, Initial algorithm was
devloped using XORArbiter PUF, 64 bit CRP was used to authenti-
cate the EDCs. Arbiter PUF utilizes the property of intrinsic delay
variations of each device to generate a unique identity. It is best
suited for lightweight hardware security, it is a delay based model
consisting of a path-swapping switch block and an arbiter circuit
[10].

Further the model was improved in Fortified-Edge 1.0 to use
SRAM PUF based certificate authority scheme to reduce the data
security issue due to storing of CRP dataset locally. To enhance the
secure authentication scheme and monitoring the EDCs, ML based
monitoring and authentication verification scheme was introduced
in Fortified-Edge 2.0. Fortified-Edge 3.0 tested various lightweight
ML algorithms suitable for processing at the edge. Progressive
research done on fortifying the EDCs are listed in the Table 2. The
current research focuses on integration of hardware and software
to improve the reliability of Fortified-Edge providing added security
features without adding extra area overhead.

Current proposed work focuses on improving the reliability
of Fortified-Edge model by integrating the error detection and
correction scheme.

6 PROPOSED FORTIFIED-EDGE 4.0
The proposed framework for PUF response bit error detection and
correction is shown in Figure 4. The PUF module along with the
error correction system is part of the hardware security primitive,
the CRP dataset consists of pre-obtained responses for a set of



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Seema G. Aarella, Venkata P. Yanambaka, Saraju P. Mohanty, and Elias Kougianos

PUF-Enabled IoT Devices

Cloud 
InfrastructureEdge Infrastructure

Edge 
Gateway

Cloud 
Gateway

Edge Intelligent Device Layer

Load Balancing in Collaborative Edge Computing 

EDC-1 EDC-2

EDC-4 EDC-5

EDC-3

1010101 1010101

1010101

1010101 1010101

Figure 3: Secure authentication of EDC in collaborative edge
computing

Table 2: Comparative Table for Fortified-Edge Research.

Research Algorithm Application Accuracy(%)

Fortified-Edge
1.0 [4]

SRAM PUF-based
Certificate

EDC Authentication NA

Fortified-Edge
2.0[3]

SVM ML-based Authenti-
cation & Monitoring

100

Fortified-Edge
3.0[1]

Lightweight ML
models

Anomaly & Intru-
sion detection

99.33

Current Re-
search Fortified-
Edge 4.0

K-mer Sequence PUF Response Bit
Error Correction

99.74
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Figure 4: Proposed framework for PUF bit error detection
and correction

challenges. The data that is the responses are divided into smaller
chunks using K-mers, K-mers is used largely in studies of DNA
sequencing, where a substring is extracted from a larger string
of data. For applications like error correction a shorter K-mer is
preferred, the K-mer considered in this sequencing model is of the
size 6.

The extracted words are vectorized, where each row in thematrix
represents a document and each column represents a unique word
(n-gram), the collection of the vectors is visually represented as the
Vector store in the Figure 4. The ML model is trained with a 100K
dataset, consisting of 100 responses generated for each challenge,
for a total of 1000 challenges.

The words are vectorized using the CountVectorizer class from
the scikit-learn library in Python, the vector-matrix columns rep-
resent the unique word or n-gram, rows represent the document,
and the values in the matrix represent how many times each word
appears in each document. multinomialNB of the Naive Bayes is
used as the classifier and the model is fit, it is a probabilistic clas-
sification algorithm based on Bayes’ theorem, particularly used
for classification tasks where features represent the frequency of
events.

The ML model is trained on the PUF CRP dataset, the model
groups the responses into classes based on the sequences, the model
is trained to predict the correct response for each challenge by
identifying the class of the new response and comparing it with
the original classes of the errorless response bits.

7 EXPERIMENTAL SETUP
This research uses the 64-bit Arbiter PUF architecture. PUFs. PYNQ™
Z2 FPGA which is based on Xilinx Zynq C7Z020 SoC was used for
PUF implementation. Also, Xilinx BASYS3 FPGA was used to build
the PUF. The key metrics used to verify the performance of PUFs
are Uniqueness, Randomness and Hamming Distance (HD). The
uniqueness of the PUF is a measure of the average interchip HD
of the response, and ideal PUF should have 50% uniqueness. Ran-
domness is the measure of the balance between the number of "1"s
and "0"s in the reponse. The performance of the arbiter PUF used
in this research was measured, and it showed 49.52% Uniqueness,
86.85% Randomness, and 45.67% inter-HD.

The process flow of the implemented ML model for PUF bit error
detection and correction using the K-mers function for vectorization
of the bit sequences and classification using multinomial Naive
Bayes method is as shown in Figure 5. The simple representation
of the PUF bit error correction method is represented in Figure 6,
where the model reads in a PUF response with error and predicts
the corrected/actual response for a given challenge. 1000 challenges
were given to the PUF 100 times each and responses were generated
for dataset. 80% was used for training and 20% was used for testing
from this.

(MultinomialNB)CRP Dataset

Clean

(K-Mers 
Function)

Split into 
Sequences 

Vectorize

Train & 
Test Classifier Predict

Figure 5: Process flow of the implemented machine learning
model
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Response with Error Corrected Response 
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Figure 6: Error correction process using themachine learning
model
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The 100K response data is initialized as string data and each set
of 100 responses is grouped into a class, thus giving us 1000 classes.
The top 10 classes with 100 responses in each class as identified
by the algorithm are shown in Figure 8. This classification is the
proof that the algorithm can accurately group 100 responses of 1
challenge into a unique class, which helps to retrieve the original
response from a response which has bit error, by identifying the
class to which it belongs. K-mers are applied on the response strings
to generate sequences and converted to human texts called words,
a total of 511 features are generated from 100000 human texts.

The K-mer of size 6 generates 51 unique sequences as shown
in Figure 7. The y-axis represents the "K-mer Index" ranging from
0 to the total number of K-mers minus 1. The x-axis presents "Bit
Position", indicating the position of each bit (0 or 1) within the
binary sequence. The visual representation of the K-mer sequences
helps to study the pattern distribution and examine bit positions for
diversity, consistency, and other structural information. The top 10
actual classes and the predicted classes are shown in the confusion
matrix in Figure 9.
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Figure 8: Classification of sequences into classes

8 RESULTS AND ANALYSIS
The model is trained on a 100K dataset, with 80% data used for
training and 20% data used for testing. The model can predict the

Figure 9: Confusion matrix showing the top 10 classes

class of the response accurately, which is then compared to the
actual class of the response, as shown in Figure 10. In case any error
is found in the response bit, the corrected response is displayed. The
trained model is deployed on Raspberry Pi 4 and both training and
prediction analysis is done. The algorithm is evaluated for accuracy,
precision, recall, and F1-score, for each of the metrics it gives 100%
results. The ML model is tested on the 10K dataset first and later
tested on the 100K dataset, both giving the same results on the
evaluation metrics.

To analyze the coverage of K-mers, the coverage rate was calcu-
lated, the coverage rate gives insights into the percentage of unique
K-mers in the dataset, it was estimated to be 2.28% for the 6-mers
used, suggesting that, on average, 2.28% of all possible unique 6-
mers are present in the dataset. This could be due to the highly
conserved nature of the dataset, the size of the dataset causing this
issue can be ruled out as the dataset used is larger. By increasing the
size of the K-mers it was observed that the coverage rate increases
significantly.

To test for overfitting of the model, a KFold cross-validation
was done, to assess the model’s performance on multiple folds
of data, the cross-validation scores obtained are 99.78%, 99.74%,
99.70%, 99.75%, 99.73%, with a mean accuracy of 99.74%. The cross-
validation scores are consistently high indicating the model is per-
forming well across different folds of data. The mean accuracy
of 99.74% suggests that the model is effective in making accurate
predictions and can generalize well to unseen data.

The algorithm is also modified to look up the unique challenges
in a dataset and retrieve the corresponding challenge for a given
response for further verification of the accuracy of the predicted
response for the given input challenge as represented in Figure 11.

The process of training and prediction of new data is analysed for
time and power consumed. The total training time is 30.63 seconds,
and the power consumed for training on a Raspberry Pi 4 is 4.6-4.7
Watts, in actuality a trained model will be deployed to an edge
device, the training is done on Raspberry Pi for analysis purpose
only. The total execution time to predict bit error and correct the
error is 0.08 seconds, with processing speed of 13.15 sequences per
second and processing power of 0.28 sequences per character.The
idle power of Raspberry Pi 4 was in range of 3.4-3.6 Watts, the
total power consumed for bit error detection and correction is an
average of 4.1 Watts.

Table 3 shows the results of various ML algorithms used for
improving the reliability of PUFs using methods like error detection,
correction, classification, and authentication processes that exclude
the need for large area overhead ECC modules.
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Figure 10: Result of the algorithm showing the input response
and corrected response

Figure 11: Result showing the corresponding challenge to
the corrected response

Table 3: Comparative Table for State-of-the-Art Literature.

Research Year Algorithm Accuracy(%)
Upadhyaya et.
al. [20]

2019 Natural Redundancy decoders
based on Machine Learning

NA

Suragani et. al.
[19]

2022 Proof-of-Concept using CNN 97.34

Chatterjee et.
al. [5]

2020 Random Forest based PUF Cali-
bration scheme

90.00

Najafi et. al.
[14]

2021 Deep CNN 94.90

Wen et. al. [21] 2017 Fuzzy Extractor 98.00

Current
Research
Fortified-
Edge 4.0

2024 K-mer Sequence 99.74

9 CONCLUSIONS
This research proposes a novel K-mer sequence-based bit error de-
tection and correction algorithm for correcting the PUF responses.
The stability of the PUF response increases the reliability of the PUF
when employing it in security and cryptographic applications. The
power and time analysis proves that the ML model is low power
consuming, faster in processing, making it suitable for EDC Au-
thentication in resource constrained environment at the edge. The
multinomialNB classifier used is fast and computationally efficient
as well.

For future research, we are considering using this reliable PUF
architecture for deepfake detection or prevention. This PUF module
can be used as a device authenticator if installed in the camera
module to identify the device. The machine learning model can
be used as a verifier for the images generated from the authorized
device.
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