
ToEFL: A Novel Approach for Training on Edge for a Smart
Agriculture Application

Alakananda Mitra∗
Nebraska Water Center,

University of Nebraska-Lincoln
Lincoln, NE, USA
amitra6@unl.edu

Saraju P. Mohanty
Dept. of Computer Science and

Engineering,
University of North Texas

Denton, TX, USA
saraju.mohanty@unt.edu

Elias Kougianos
Dept. of Electrical Engineering,

University of North Texas
Denton, TX, USA

elias.kougianos@unt.edu

ABSTRACT
Billions of devices on the Internet of Things (IoT) capture massive
amounts of data from everyday events, raising privacy and security
concerns. The current technology standard transfers the majority of
this data over the internet stores it, processes it, and uses it to train
machine learning (ML) and deep learning (DL) models on the cloud
server. Then, edge devices make decisions. However, this threatens
data privacy and security. Federated learning (FL) can be helpful in
this scenario because it transfers the model to the data. However,
issues like poor network connectivity, low bandwidth, and network
latency demand more research on edge-based models, on-device
training, and lightweight and low-overhead communication pro-
tocols. In this article, we present ToEFL, an incremental training
(T) on (o) edge (E) method for an FL network in a smart agriculture
application, addressing data bottlenecks and low computational
capability constraints. We selected plant disease detection as the
application. The whole idea is to train the model on the edge device
to reduce the frequency of server updates and make ToEFL suitable
for a remote village where internet service may be poor. The ToEFL
system can choose between server and local models based on model
performance, with the latter more tailored to a local dataset.

CCS CONCEPTS
• Computing methodologies→Machine learning;

KEYWORDS
Smart Agriculture, Internet of Agricultural Things (IoAT), Edge-AI,
Federated Learning, Data Privacy.

ACM Reference Format:
Alakananda Mitra, Saraju P. Mohanty, and Elias Kougianos. 2024. ToEFL: A
Novel Approach for Training on Edge for a Smart Agriculture Application.
In Proceedings of Great Lakes Symposium on VLSI 2024 (GLSVLSI 2024). ACM,
New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In the last few decades, the digital revolution has resulted in sig-
nificant development in areas like artificial intelligence (AI), ma-
chine learning (ML), deep learning (DL), natural language process-
ing (NLP), cloud computing, edge computing, and the Internet-of-
Things (IoT). Billion-IoT devices collect a large amount of data,
which demands a lot of computational power and cloud-based solu-
tions to train and infer ML/DL models (Fig. 1a). However, network
bandwidth and latency impair end device response, hindering time-
sensitive applications [29]. In edge-cloud-continuum solutions (Fig.
1b) the AI-enabled edge handles real-time data collection, process-
ing, and prediction for time-sensitive applications, while the cloud
handles heavy-load tasks like training [35]. These two solutions
transfer data from the origin to the server. Nevertheless, the need for
distributed training, such as federated learning and edge-oriented
solutions, arises due to global data privacy and regulation activities
(Fig. 1c). Edge-based solutions, such as neural architectures, quanti-
zation, pruning, and effective training algorithms, are prioritized
for low-powered devices with limited processing power [3]. FL is
allowing distributed training to trade-off between data privacy and
computational load.

FL is a computing strategy aiming to train an ML or DL model in
a decentralized manner instead of training a centralized model on
a server [20]. It helps to overcome the data regulation and privacy
aspects, as well as unreliable and low-bandwidth internet connec-
tions. Clients, such as mobile phones, personal computers, tablets,
and application-specific IoT devices, act as decentralized training
nodes and actively participate in training with the local data. Once
the training is complete these nodes send the local model updates
to the server. All the updates are then aggregated to generate a
global model in the server.

The rest of the article is organized as follows: the research prob-
lem, the proposed solution, and its significance are discussed in
Section. 2. We briefly describe recent work on various aspects of
FL and the motivation of our study in Section 3. Section 4 presents
the methodology of our work focusing on the model architecture,
training protocol, the data pipeline, and the implementation in de-
tail. The results are discussed in Section 5. Finally, the conclusions,
limitations, and future work have been discussed in Section 6.

2 CONTRIBUTION OF THE CURRENT PAPER
2.1 Problem Addressed
In [12] and [13], the authors explored the feasibility of deployment
of CNNs in TinyML devices and extended that idea to deploy in

https://orcid.org/0000-0002-8796-4819
https://orcid.org/0000-0003-2959-6541
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA Mitra et al.

Cloud-based A-CPS Edge-Cloud-Continuum-based A-CPS Edge-based A-CPS

Model Training Data Storage Inference

Figure 1: Types of Cyber-Physical Systems for Agriculture

a decentralized federated learning (FL) environment. This paper
also aims to prioritize data privacy. Here, we studied whether com-
plete training on an embedded board is viable compared to partial
training in [13].

2.2 Solution Proposed
To address this we proposed an efficient trainingmethod with a data
pipeline to avoid the memory bottleneck for embedded systems. For
embedded systems, the majority of the research is on smaller size
neural architecture or data pipeline, validated with handwritten
digits dataset, MNIST (grayscale images of size 28×28) [11] and they
don’t reflect the real-world complexity. Hence, each model/method
should be validated using a real-life domain dataset.

2.3 Significance of the Solution
Our contribution can be summarized as:

• We present an incremental algorithm for training nodes of
an FL network to overcome the computational constraints.

• The unsupervised training method lets us add any unknown
class.

• A model selector block has been proposed to emphasize the
local database effect on local models rather than the global
model.

• Two different datasets have been used to validate the training
protocol.

• The training protocol for a single node has also been verified
in a Raspberry Pi-4B single-board computer.

3 RELATEDWORK
In this section, we briefly discuss current FL research on training
methodologies and FL networks.

In [5], authors explored the effects of the number of clients sam-
pled per round (cohort size) on FL. Strategies like structured updates
and sketched updates were used in [20] to reduce the uploading cost
from clients to the server and how the method efficiency is affected
by the number of communications between the clients and server,

has also been studied. The authors used the Federated Averaging
algorithm [23] to reduce the number of communications. The con-
volutional model from [31] was trained with CIFAR-10 data and
also an LSTM next-word prediction model with data from Reddit
[2].

Network communication is a major limitation in FL as the local
model needs to send the updates to the global model. In [25], the
authors presented a method using rate-distortion theory to reduce
the average communication cost. A recurrent neural network (RNN)
model was trained on-device to predict the next word in mobile
virtual keyboard [16]. The work shows how to train language mod-
els on client devices. To improve the performance for non-IID data,
the authors in [21] proposed a model contrastive learning approach
where the similarity between the model representations is used
to rectify the local training for the clients. An open-source frame-
work for training ML models in the FL setting was presented in
[28]. It facilitates the training of ML models in an FL production
environment. Table. 1 describes some more studies, their methods,
and findings.

From the above discussion, it is clear that most efforts to improve
the FL paradigm focused on improving client-server connectivity
or cloud training methodologies. However, localized training is nec-
essary considering the heterogeneity of user data [18]. Additionally,
weak network connections in remote communities can hinder re-
curring client model updates to the server. Using edge-based model
training instead of fine-tuning can overcome this limitation.

In Agriculture, vast IoT sensors collect massive amounts of data
and are an ideal application field for FL. Researchers are trying to
solve various agricultural issues like plant disease [12, 17], disease
and pest detection [8], crop classification [19], intrusion-detection
for IoT devices [22] and so on. However, the majority of the research
is focused on a specific agro issue and does not address the training
aspects of FL in an agriculture setting.

4 PROPOSED METHOD
The discussion in Section 3 revealed that the edge-based training
of AI models is one of the ways to efficiently run an FL-based

ToEFL: A Novel Approach for Training on Edge for a Smart Agriculture Application GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA

Table 1: Works on Various Aspects of Federated Learning

Papers Methods Findings
[18] Model Agnostic

Meta-Learning
FL is personalization focused.
Used-based fine-tuning of the
model presents a more accurate
model than when optimizing is
done for the global model.

[4] A generative
model

Manual dataset sanity is not
possible in FL. The model de-
bugged common data issues
where manual data inspection
is impossible.

[33] Norm thresh-
olding and
weak differen-
tial privacy

As FL is a decentralized process,
adversarial attacks pose a seri-
ous problem in FL. The attacks
could be resisted with the men-
tioned strategies without affect-
ing the performance.

application. We propose ToEFL, a novel method for Training (T) on
Edge (E) for an FL network of a smart agricultural [26] application.

4.1 Overview
Here, we propose an incremental training protocol (Algorithm.1). It
allows the resource-constrained edge nodes of an FL system to han-
dle data processing, model training, model selection, and inference.
When images are available to a node, unsupervised learning allows
adding new and unknown classes. A high-level overview of an FL
network using ToEFL is provided in Fig. 2a. It has three levels: end
device, edge, and cloud server. (Fig. 2b) shows all modules in an
edge node. Figure 2c outlines the key steps: data collection, process-
ing, edge model training, server updates, local model aggregation,
global model transmission, edge model selection, and inference. Fig.
3 depicts the workflow of training the local model in an edge node.

4.2 Network and Training Protocol
The disease classification network has two parts- feature extractor
and classifier. The feature extractor extracts the features from the
images and the classifier classifies the images based on the feature
vectors. However, loading all the extracted feature vectors in a data
frame is too large to fit into the memory of an edge device. Hence
we followed the training protocol mentioned below:

• We used transfer learning for faster training and higher accu-
racy. MobileNetV2 [30] pre-trained on ImageNet [9] dataset
has been used as the feature extractor and feature vectors
were obtained from a pre-specified layer (we omitted the last
five layers of MobileNetV2).

• The feature vectors from the input images are extracted
batch-wise (in our experiment 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 32) to save in a
.csv file.

• Accessing all the feature vectors at once by loading them
to memory can stall the training. Hence, we train the clas-
sifier with the feature vectors of images one by one using
Algorithm.1.

EN-1 EN-2 EN-N

End Devices

---- Local Model

---- Global Model

---- Raw Data

Edge Nodes…

Cloud

(a)

Data Preprocessor

Feature Extractor

Data Pipeline

M
o

d
e

l S
e

le
c
to

r

F
in

a
l M

o
d

e
l

Edge Node

Classifier Training

(b)

Inference

Model Selection at Edge

(Local Or Global)

Sending Global Model to Edge

Aggregating Local Models at Server

Sending Model Updates to Server

Model Training at Edge

Data Collection & Processing

Start

End

(c)

Figure 2: Details of the Proposed Method, ToEFL. (a) shows
the higher-level overview of an FL network. (b) depicts the
modules in an edge node. (c) shows the seven main steps of
ToEFL of any branch (e.g., the red-circled branch).

• The classifier is encapsulated in a pipeline. Standardization
of the feature vectors is first performed in the pipeline to get
a standardized distribution with a 0 mean and unit variance.

• We experimented with the logistic regression as the final
classifier layer to map standardized feature vectors to class
labels. As this case is a classical multi-class (𝑀) classification
problem, we used OneVsRest with linear regression to accom-
modate multiple classes. So, we train the multi-class classifi-
cation problem as separate𝑀 binary class problems where
each classifier 𝑓𝑚 is trained to determine whether the feature
vector belongs to a class𝑚 or not where𝑚 ∈ {1, 2, ..., 𝑀}.
For a test example 𝑐 , all𝑀 classifiers are run for 𝑐 , and the
highest score is selected. As the optimizer SGD (with learning
rate 0.01) and loss function log loss have been used.

• The classifier has also been trained in an unsupervised way
so that future unknown classes can be classified.

GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA Mitra et al.

Image BatchesInput Images

Feature

Extractor
Classifier

Local
Trained
Model

Figure 3: Workflow of Training in an Edge Node.

Algorithm 1 How does ToEFL work?

1: Input: Image I
2: Output: Prediction P
3: Random weights𝑤0 are initialized to the global model in the

Server;
4: 𝑤0 is sent to all the edge nodes N of the FL network;
5: for 𝑛 ∈ 𝑁 do /* Training for all the nodes. */
6: Set a list for the𝑚𝑒𝑡𝑟𝑖𝑐 and initialize its value to a empty

list;
7: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
8: Set a batch size;
9: while 𝑖𝑚𝑎𝑔𝑒 ≠ 𝑁𝑜𝑛𝑒 do /* When images are available to

a node. */
10: Make image batches B.
11: for 𝛽 ∈ B do
12: Extract feature vectors F from 𝛽 using the feature

extractor module;
13: Flatten F for 𝛽 ;
14: Save F ;
15: for f ∈ F do
16: Send f to the classifier pipeline;
17: Predict P for f;
18: Update the weights;
19: end for
20: Delete F
21: end for
22: Save𝑚𝑒𝑡𝑟𝑖𝑐 ;
23: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+ = 1;
24: end while
25: if 𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⩾ 𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−1 then
26: Send the local model M𝑙 to the server;
27: Server aggregates the model as per [24];
28: Server sends the global modelM𝑔 to n;
29: end if
30: if 𝑚𝑒𝑡𝑟𝑖𝑐𝑙𝑜𝑐𝑎𝑙 ≫𝑚𝑒𝑡𝑟𝑖𝑐𝑔𝑙𝑜𝑏𝑎𝑙 then
31: Keep theM𝑙 ;
32: else
33: Keep theM𝑔 ;
34: end if
35: Use the trained model M to predict the unknown image

𝑖𝑚𝑎𝑔𝑒𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ;
36: end for

4.3 Data Collection and Processing
To validate the proposed method, two datasets were used. Both
datasets are available publicly- the cotton disease dataset [7] and
the corn or maize leaf disease dataset [6]. The cotton disease dataset
has four classes with 2310 images and the corn dataset also has the
same number of classes but with 4124 images. The images were
resized to 224 × 224 and normalized as per the mean and standard
deviation of the ImageNet dataset [10] as the feature extractor is pre-
trained on the ImageNet. Since real-life data come into the stream,
it eliminates the need for data storage facilities. Various image
augmentation strategies have been performed including vertical
and horizontal flip, transpose, random rotation, blurring, and grid
distortion.

4.4 Implementation
To validate the performance of ToEFL, we performed the classifi-
cation task for the datasets [6, 7]. A Raspberry Pi 4 Model B board
was used as the edge platform. The data was streamed from the
laptop to the Pi using the WiFi. To implement the pipeline and data
streaming, the River [27] library was used. The codes are written
in Python. NumPy, Pandas, and Keras are other libraries and ML
framework used in this work.

5 PERFORMANCE EVALUATION
Table. 2 describes the performancemetrics for both datasets. Among
those metrics, accuracy tells the total correct predictions by the
model. Here, accuracy between ∼ (72 − 74)% has been obtained
for both datasets. However, there is a gap between cotton disease
dataset [7] training and testing accuracy. As [7] has healthy and dis-
eased cotton plants, the shape and spread of the plants are different
in different images which caused the accuracy difference. However,
the training and testing datasets for the corn dataset, consisting
of leaf images, show similar types of accuracy. Fig. 4a shows the
confusion matrix (cm) for no image augmentation scenario and Fig.
4b shows that of with data augmentation. As the name suggests,
those metrics describe where the model was confused to predict. It
gives us an idea of how to improve the training. From the cm, we
calculated some other metrics. Precision tells howmany instances of
the positive class were predicted correctly among the predicted pos-
itive class and recall describes how many relevant instances were
correct. So, precision tells more about the quality of the prediction
whereas recall emphasizes more about sensitivity or quantity. One-
vs-all strategy is followed for the cases of multiple classes like here.
In this study, we were able to reach the same range for precision,
recall, and F1-score as accuracy.

ToEFL: A Novel Approach for Training on Edge for a Smart Agriculture Application GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA

Reasons for lower performance metrics:
• In real life, the data comes continuously, and data storage in
resource-constrained edge devices is not advisable. Hence, in
real life, data will be coming in different conditions. However,
we didn’t have many images with various conditions. We
need more images with all types of conditions to have better
accuracy.

• Image augmentation has helped to get better accuracy for the
cotton dataset but degrades the model for the corn dataset.
This explains that a model with a higher capacity is needed.

• Image augmentation techniques used here might not be suit-
able for the used cases.

This study explains how the absence of data variations and mean-
ingful data augmentation can affect the training of any ML model.
As training on edge when the data come on the fly is a relatively
new area of research [32], an exact match for comparison is not
available. Table. 3 compares ToEFL with some works that employed
Raspberry Pi for training or testing. The table shows no other studies
did the training from scratch.

6 CONCLUSION
Federated learning enables IoT devices to train in a shared dis-
tributed way. Data is no longer saved in the cloud but is used and
stored at the local nodes. However, training in resource-constrained
edge devices demands more research on training protocols at the
edge, suitable models for TinyML devices, quantization, and prun-
ing techniques. This article presents an incremental training proto-
col for training an ML model at the edge. As the upload speed is less
than the download speed [1], the frequency of local updates to the
server has been reduced by extracting the features in batches. The
resource constraint has been addressed by training the classifier
with individual feature vectors. As ToEFL has been trained in an
unsupervised way so that unknown classes can be added to the
system. The node training has only been implemented here.

Data streaming strategies have been used to replicate the con-
tinuous data flow. On-the-fly data training makes training more
challenging because it takes longer to train as the training is per-
formed with the feature vectors one by one. Principal Component
Analysis (PCA) can address the high sparsity of the feature vectors.
Training with more data can also increase the accuracy.

Future work will include:
• The implementation of the entire FL system with model
overwrites facilities- an overwrite facility is needed because
there might be different crop fields where ToEFL is used. In
such cases, the local model predominates over the global
model.

• Training with field data will complete the study.
• A detailed study needs to be performed for the best data
augmentation strategies.

• More experiments on the model are needed which can pre-
dict complex images.

ACKNOWLEDGEMENT
The authors are thankful to Catherine Dockendorf for the initial
research on Federated Learning-based approaches in Smart Agri-
culture Applications.

REFERENCES
[1] 2017. Federated Learning: Collaborative Machine Learning without Central-

ized Training Data. https://blog.research.google/2017/04/federated-learning-
collaborative.html. Accessed on April 06, 2024.

[2] Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-Hsuan Sung, Brian Strope, and
Ray Kurzweil. 2016. Conversational contextual cues: The case of personalization
and history for response ranking. arXiv preprint arXiv:1606.00372 (2016).

[3] Alberto Ancilotto, Francesco Paissan, and Elisabetta Farella. 2023. XiNet: Effi-
cient Neural Networks for tinyML. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 16968–16977.

[4] Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy,
Peter Kairouz, Mingqing Chen, Rajiv Mathews, and Blaise Agüera y Arcas. 2019.
Generative Models for Effective ML on Private, Decentralized Datasets. CoRR
abs/1911.06679 (2019). arXiv:1911.06679 http://arxiv.org/abs/1911.06679

[5] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Vir-
ginia Smith. 2021. On large-cohort training for federated learning. Advances in
neural information processing systems 34 (2021), 20461–20475.

[6] Corn or Maize Leaf Disease Dataset [n. d.].
https://www.kaggle.com/datasets/smaranjitghose/corn-or-maize-leaf-disease-
dataset. Accessed on February 28, 2024.

[7] CottonDisease Dataset [n. d.]. https://www.kaggle.com/datasets/janmejaybhoi/cotton-
disease-dataset/data. Accessed on February 25, 2024.

[8] Fangming Deng,Wei Mao, Ziqi Zeng, Han Zeng, and BaoquanWei. 2022. Multiple
diseases and pests detection based on federated learning and improved faster
R-CNN. IEEE Transactions on Instrumentation and Measurement 71 (2022), 1–11.

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[11] Li Deng. 2012. The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[12] Catherine Dockendorf, AlakanandaMitra, Saraju PMohanty, and Elias Kougianos.
2023. "Lite-Agro: Exploring Light-Duty Computing Platforms for IoAT-Edge AI in
Plant Disease Identification". In Proc of the 6th IFIP International Internet of Things
Conference. Springer, 371–380. https://doi.org/10.1007/978-3-031-45882-8_25.

[13] Catherine Dockendorf, Saraju PMohanty, AlakanandaMitra, and Elias Kougianos.
2023. Lite-Agro 2.0: Integrating Federated and TinyML in Pear Disease Classifica-
tion IoAT-Edge AI. In Proc. of the IEEE International Symposium on Smart Electronic
Systems (iSES). IEEE, 429–432. https://doi.org/10.1109/iSES58672.2023.00096.

[14] Fotios Drakopoulos, Deepak Baby, and Sarah Verhulst. 2019. Real-time audio
processing on a Raspberry Pi using deep neural networks. In 23rd International
Congress on Acoustics (ICA 2019). Deutsche Gesellschaft für Akustik, 2827–2834.

[15] Oliver Dürr, Yves Pauchard, Diego Browarnik, Rebekka Axthelm, and Martin
Loeser. 2015. Deep Learning on a Raspberry Pi for Real Time Face Recognition..
In Eurographics (Posters). 11–12.

[16] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[17] Godwin Idoje, Tasos Dagiuklas, and Muddesar Iqbal. 2023. Federated Learning:
Crop classification in a smart farm decentralised network. Smart Agricultural
Technology 5 (2023), 100277.

[18] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2019. Improving
Federated Learning Personalization via Model Agnostic Meta Learning. CoRR
abs/1909.12488 (2019). arXiv:1909.12488 http://arxiv.org/abs/1909.12488

[19] Fawad Salam Khan, Sikandar Khan, Mohd Norzali Haji Mohd, Athar Waseem,
Muhammad Numan Ali Khan, Sajid Ali, and Rizwan Ahmed. 2022. Federated
learning-based UAVs for the diagnosis of Plant Diseases. In 2022 International
Conference on Engineering and Emerging Technologies (ICEET). IEEE, 1–6.

[20] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[21] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Model-contrastive federated
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10713–10722.

[22] Dapeng Man, Fanyi Zeng, Wu Yang, Miao Yu, Jiguang Lv, and Yijing Wang. 2021.
Intelligent intrusion detection based on federated learning for edge-assisted
internet of things. Security and Communication Networks 2021 (2021), 1–11.

[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[24] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
2016. Federated Learning of Deep Networks using Model Averaging. CoRR

https://arxiv.org/abs/1911.06679
http://arxiv.org/abs/1911.06679
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-031-45882-8_25.
https://doi.org/10.1109/iSES58672.2023.00096.
https://arxiv.org/abs/1909.12488
http://arxiv.org/abs/1909.12488

GLSVLSI 2024, June 12-14, 2024, Tampa Bay Area, FL, USA Mitra et al.

Table 2: Performance Metrics for ToEFL for Cotton Disease and Corn Leaf Disease Datasets

Dataset No. of
Training

Data
Aug.

Precision Recall F1-Score Accuracy (%)

Data Macro
Avg.

Micro
Avg.

Macro
Avg.

Micro
Avg.

Macro
Avg.

Micro
Avg.

Training Testing

Corn 3617 No 0.72 0.72 0.74 0.72 0.69 0.72 75.23 71.72
Dataset 18080 Yes 0.67 0.67 0.61 0.67 0.62 0.67 69.48 66.66
Cotton 2204 No 0.72 0.72 0.74 0.72 0.69 0.72 79.85 72.71
Disease
Dataset

22041 Yes 0.73 0.73 0.71 0.73 0.74 0.70 81.46 73.91

(a) (b)

Figure 4: Confusion Matrices (CM) for Corn Dataset. Fig. shows the CM with no image augmentation and Fig. shows the CM
with image augmentation.

Table 3: Comparative Analysis with Existing Studies

Paper Hardware Board
Initial

Training
at Edge

Retraining at
Edge

[34] Raspberry Pi 4B No Yes
[15] Raspberry Pi _B No No
[14] Raspberry Pi 3B+ No No

ToEFL Raspberry Pi 4B Yes Yes

abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.org/abs/1602.05629
[25] Nicole Mitchell, Johannes Ballé, Zachary Charles, and Jakub Konečný. 2022.

Optimizing the Communication-Accuracy Trade-off in Federated Learning with
Rate-Distortion Theory. CoRR abs/2201.02664 (2022). arXiv:2201.02664 https:
//arxiv.org/abs/2201.02664

[26] Alakananda Mitra, Saraju P Mohanty, and Elias Kougianos. 2023. Smart
Agriculture–Demystified. In Proc of the 6th IFIP International Internet of Things
Conference. Springer, 405–411. https://doi.org/10.1007/978-3-031-45878-1_28.

[27] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael
Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel
Abdessalem, et al. 2021. River: machine learning for streaming data in Python.
(2021).

[28] G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi
Sharma, Igor Davidyuk, Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov,
Dmitry Agapov, et al. 2021. OpenFL: An open-source framework for Federated
Learning. arXiv preprint arXiv:2105.06413 (2021).

[29] Guoping Rong, Yangchen Xu, Xinxin Tong, and Haojun Fan. 2021. An edge-
cloud collaborative computing platform for building AIoT applications efficiently.

Journal of Cloud Computing 10 (2021), 1–14.
[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[31] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[32] Bharath Sudharsan, John G Breslin, and Muhammad Intizar Ali. 2020. Edge2train:
A framework to train machine learning models (svms) on resource-constrained
iot edge devices. In Proceedings of the 10th International Conference on the Internet
of Things. 1–8.

[33] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan.
2019. Can You Really Backdoor Federated Learning? CoRR abs/1911.07963 (2019).
arXiv:1911.07963 http://arxiv.org/abs/1911.07963

[34] Fushuai Wang, Renren Zheng, Penghui Li, Hanni Song, Dongming Du, and
Jingchao Sun. 2021. Face recognition on Raspberry Pi based on MobileNetV2.
In 2021 International Symposium on Artificial Intelligence and its Application on
Media (ISAIAM). 116–120. https://doi.org/10.1109/ISAIAM53259.2021.00031

[35] Mazin Yousif. 2022. "Intelligence in the Continuum". "IEEE Computer Society" 2,
3 (2022), 38.

https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2201.02664
https://arxiv.org/abs/2201.02664
https://arxiv.org/abs/2201.02664
https://doi.org/10.1007/978-3-031-45878-1_28.
https://arxiv.org/abs/1911.07963
http://arxiv.org/abs/1911.07963
https://doi.org/10.1109/ISAIAM53259.2021.00031

	Abstract
	1 Introduction
	2 Contribution of the Current Paper
	2.1 Problem Addressed
	2.2 Solution Proposed
	2.3 Significance of the Solution

	3 Related Work
	4 Proposed Method
	4.1 Overview
	4.2 Network and Training Protocol
	4.3 Data Collection and Processing
	4.4 Implementation

	5 Performance Evaluation
	6 Conclusion
	References

