Homeworks
|
|
|
|
(1) 4.1-1 (page-67), (2) 4.1-2 (page-67), (3) 6.1-1 (page-129), (4) 6.1-2 (page-129), (5) 6.1-4 (page-130), (6) 6.1-5 (page-130) (7) 6.1-6 (page-130), (8) 6.2-1 (page-132), (9) 6.2-3 (page-132), (10) 6.2-4 (page-132), (11) 6.3-1 (page-135), (12) 6.3-2 (page-135), (13) 6.4-1 (page-136), (14) 6.5-1 (page-140), (15) 6.5-2 (page-140) |
|
|
(1) B.4-4 (page-1084), (2) B.4-5 (page-1084), (3) B.5-1 (page-1090), (4) B.5-4 (page-1091), (5) 22.1-1 (page-530), (6) 22.1-2 (page-530) (7) 22.1-7 (page-531), (8) 2.3-1 (page-36), (9) 2.3-5 (page-37), (10) 4.3-1 (page-75), (11) 4.3-3 (page-75), (12) 4.3-4 (page-75), (13) 4.2-2 (page-72), (14) 4.2-4 (page-72). |
|
|
(1) 1.2-2 (page-13), (2) 1.2-3 (page-13), (3) 2.1-1 (page-20), (4) 2.1-2 (page-21), (5) 2.2-1 (page-27), (6) 2.2-4 (page-27), (7) Find the running time of the merge procedure in page-29 of the text book, (8) 2.2(d) (page-38), (9) 2-3(a) (page-39), (10) 3.1-1 (page-50), (11) 3.1-2 (page-50), (12) 3.1-4 (page-50), (13) 3.1-5 (page-50). (14) Prove equation (3.18) page-55 of the text book. (15) Prove that n! = w(2^n) and n! = o(n^n). |
|
|
(1) Prove the general arithmatic series summation using mathematical induction,
(2) Prove the general geometric series summation using mathematical induction, (3) A.2-1 (page-1067), (4) A.2-4 (page-1069), (5) A.2-5 (page-1069). |
|
|
(1) The finite mixed series summation (assigned in class),
(2) The infinite mixed series summation (assigned in class), (3) Plot the following function using any tool (such as MATLAB) you know and comment on their growth : (i) 2^n, (ii) n^2, (iii) n logn, (iv) n and (v) log n, (4) A.1-1 (page-1062), (5) A.1-4 (page-1062), (6) 3.2-2 (page-57). |
|